SPI是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口,是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要4根线,事实上3根也可以。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCLK(时钟),CS(片选)。 MOSI(SDO):主器件数据输出,从器件数据输入。 MISO(SDI):主器件数据输入,从器件数据输出。 SCLK :时钟信号,由主器件产生。 CS:从器件使能信号,由主器件控制。 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效,这就允许在同一总线上连接多个SPI设备成为可能。需要注意的是,在具体的应用中,当一条SPI总线上连接有多个设备时,SPI本身的CS有可能被其他的GPIO脚代替,即每个设备的CS脚被连接到处理器端不同的GPIO,通过操作不同的GPIO口来控制具体的需要操作的SPI设备,减少各个SPI设备间的干扰。 SPI是串行通讯协议,也就是说数据是一位一位从MSB或者LSB开始传输的,这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,MISO、MOSI则基于此脉冲完成数据传输。 SPI支持4-32bits的串行数据传输,支持MSB和LSB,每次数据传输时当从设备的大小端发生变化时需要重新设置SPI Master的大小端。 SPI interface SPI接口介绍 SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。 那么第一个上升沿来的时候 数据将会是sdo=1;寄存器=0101010x。下降沿到来的时候,sdi上的电平将所存到寄存器中去,那么这时寄存器=0101010sdi,这样在 8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。 例子: 假设主机和从机初始化就绪:并且主机的sbuff=0xaa,从机的sbuff=0x55,下面将分步对spi的8个时钟周期的数据情况演示一遍:假设上升沿发送数据
这 样就完成了两个寄存器8位的交换,上面的上表示上升沿、下表示下降沿,sdi、sdo相对于主机而言的。其中ss引脚作为主机的时候,从机可以把它拉底被 动选为从机,作为从机的是时候,可以作为片选脚用。根据以上分析,一个完整的传送周期是16位,即两个字节,因为,首先主机要发送命令过去,然后从机根据 主机的名准备数据,主机在下一个8位时钟周期才把数据读回来 SPI 总线是Motorola公司推出的三线同步接口,同步串行3线方式进行通信:一条时钟线SCK,一条数据输入线MOSI,一条数据输出线MISO;用于 CPU与各种外围器件进行全双工、同步串行通讯。SPI主要特点有:可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束 中断标志;写冲突保护;总线竞争保护等。图3示出SPI总线工作的四种方式,其中使用的最为广泛的是SPI0和SPI3方式(实线表示): 图2 SPI总线四种工作方式
根据功能定义及SPI的工作原理,将整个IP Core分为8个子模块:uC接口模块、时钟分频模块、发送数据FIFO模块、接收数据FIFO模块、状态机模块、发送数据逻辑模块、接收数据逻辑模块以及中断形式模块。 深入分析SPI的四种传输协议可以发现,根据一种协议,只要对串行同步时钟进行转换,就能得到其余的三种协议。为了简化设计规定,如果要连续传输多个数据,在两个数据传输之间插入一个串行时钟的空闲等待,这样状态机只需两种状态(空闲和工作)就能正确工作。 首先看一下mcu spi的工作过程:在空闲时SCLK 无信号。当MCU发送数据时SCLK才会产生一个8位的sclk信号将数据发送出去。同理,如果MCU一直无动作是不会有sclk信号的,如果想要读取从机的值只能先往从机发送一个无意义的十六进制数。这时才会在SCLK上出现时钟信号,而此时AD才会将数据通过dout发送出去。也就是说由于SPI通信要由主机产生sck时钟信号,只有存在时钟才从机才能把寄存器内数据发送出去,所以要保证发送的数据使得从机不会产生动作(无效数据),SPI不能只接收不发送,在接收的时候必然也在发送数据 |
|