分享

I/O芯片直接控制的开机电路

 liu007 2016-03-31

  由I/O芯片直接控制的开机电路如图7-8所示。5V待命电压经过1117低压差线性稳压器后,得出一个稳定的电压(1.8~3.3V,视具体的南桥芯片而定)供给南桥芯片内部的触发电路。

  Dl的电压并不一定取自C点,有的电路直接从5V待命电压通过电阻分压取得。在主板有SV待命电压时,D1输出的电压比D2输出的电压稍高,因此D2处于截止状态,南桥芯片内部的振荡电路及CMOS电路由Dl供电。当主板没有SV待命电压时,D1也就没有电压输出,南桥芯片内部的振荡电路及CMOS电路由3.3V电池通过D2供电,这样可以保证时钟的正常运转和不使CMOS里的配置参数丢失。

 

 

 

  开机时按下开机键,A点的电压被拉低,这样就会产生一个触发信号输入到南桥芯片的触发电路中。触发电路从B点输出一个逻辑高电平(这个电压是一直保持的,直到第二次触发),这个逻辑高电平进入I/O芯片内部的门电路进行逻辑电平转换,然后加在三极管的发射结(be)之间,使得三极管导通,从而使集电极(c)的电位被拉低,也就是ATX电源的第14脚电位被拉低,这样ATX电源开始工作,输出各组电压供给主板。

  关机时按下开机键,A点的电压被拉低,这样就会产生一个触发信号输入到南桥芯片的触发电路中。触发电路接收到触发信号后,使B点的电压翻转,即由原来的逻辑高电平翻转为逻辑低电平(这个电压是一直保持的,直到第二次触发),这个逻辑低电平进入I/O芯片内部的门电路进行逻辑电平转换,然后加在三极管的发射结(be)之间,因为发射结(be)没有偏置电压,于是三极管截止,集电极(C)的电位升高,也就是ATX电源的第14脚电位升高,ATX电源停止工作。

  部分I/O芯片直接控制的开机电路,它取消控制ATX电源第14脚的三极管,直接将E点连接到ATX电源的第14脚,如图7-8中的虚线所示,ATX电源第14脚的电位随着E点电位的改变而改变。

  参与开机触发的元器件的外观如图7-9所示。

 



    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多