分享

无人机指挥控制基础:图论(1)

 Manseu 2016-04-29

图的定义

背景知识

下面这幅图就是传说中的七桥问题(哥尼斯堡桥问题)。在哥尼斯堡,普雷格尔河环绕着奈佛夫岛(图中的A岛)。这条河将陆地分成了下面4个区域,该处还有着7座连接这些陆地的桥梁。

问题是如何从某地出发,依次沿着各个桥,必须经过每座桥且每座桥只能经过1次,最终回到原地。

不知道这个问题且好奇的童鞋现在肯定在忙活着找出来这道题的结果了。

是伟大的数学家欧拉(Leonhard Euler)在1736年首次使用图的方法解决了该问题。

欧拉将上面的模型转换成了下面这种”图“的形式。

欧拉把顶点的度定义为与该顶点相关联的边的条数,并且他证明了存在从任意点出发,经过所有边恰好一次,并最终回到出发顶点的走法的充分必要条件是:每个顶点的度均为偶数。人们称之为欧拉闭迹(Eulerian walk)。

简要定义

(graph)G=(V,E)由顶点(vertex)的集V和边(Edge)的集E组成。顶点代表了对象,在示意图中我们使用点或圆来表示它;边代表了两个对象的连接关系,在示意图中我们使用连接两顶点的线段来表示。

有时也把边称作弧(arc),如果点对(v,w)是有序的,那么图就叫做有向的图(有向图)。如果点对(v,w)是无序的,那么图就叫做无向的图(无向图)。简单的讲,边没有指向性的图叫做无向图,边具有指向性的图叫做有向图。

顶点vw邻接(adjacent)当且仅当(v,w)属于E

我们可以给边赋予各式的属性,比如权值(cost)。权值可以表示从一个顶点到另一个顶点的距离,也可以表示一个顶点到另一个顶点说话费的代价(比如时间、金钱等)。一个边上带权值的图称为网络(network)。

如果无向图中从每一个顶点到其他每个顶点都存在一条路径,则称该无向图是连通的(connected)。具有这样性质的有向图称为是强连通的的(strongly connected)。如果有向图不是强连通的,但它的基础图(underlying graph)(也就是其弧上去掉方向说形成的图)是连通的,那么称该有向图是弱连通的(weakly connected)。完全图(complete graph)是其每一对顶点间都存在一条边的图。


所谓入度(indegree)是指的顶点v的边(u,v)的条数。

如下表示了一个有着7个顶点和12条边的有向图。

如果具有n个顶点,e条边的图G的顶点i的度为di,则G的边数为:

以上这个数学公式的markdown“源码”:

$ e =\frac { \sum_{0}^{n-1} d_i} {2} $


现在将图看作抽象数据类型,下面给出ADT图的结构:

图的存储表示方式

图主要有3种常用的存储表示方式:邻接矩阵(adjacency matrices),邻接表(adjacency lists),邻接多重表(adjacency multilists)。

邻接矩阵

邻接矩阵使用|V|?|V|的二维数组来表示图。g[i][j]表示的是顶点i和顶点j的关系。

1)因为在无向图中,我们只需要知道顶点i和顶点j是否是相连的,因此我们只需要将g[i][j]g[j][j]设置为1或是0表示相连或不相连即可。如下图所示。

2)而在有向图中,我们只需要知道是否有从顶点i到顶点j的边,因此如果顶点i有一条指向顶点j的边,那么g[i][j]就设为1,否则设为0。有向图与无向图不同,并不需要满足g[i][j]=g[j][i]

3)在带权值的图中,g[i][j]表示的是顶点i到顶点j的边的权值。由于在边不存在的情况下,如果将g[i][j]设为0,就无法和权值为0的情况区分开来,因此选取适当的较大的常数INF(只要能和普通的权值区别开来就可以了),然后令g[i][j]=INF就好了。当然,在无向图中还是要保持g[i][j]=g[j][i]。在一条边上有多种不带权值的情况下,定义多个同样的|V|?|V|数组,或者是使用结构体或类作为数组的元素,就可以和原来一样对图进行处理了。

使用这种存储方式,可以很方便地判断任意两个顶点之间是否有边以及确定顶点的度,这也是这种表示法最大的优势。任意一个顶点i的度等于其邻接矩阵中顶点i所对应的行中的数字之和:

以上这个数学公式的markdown“源码”: $ \sum_{j=0}^{n-1} g[i][j] $


在这种表示法中扫描所有边至少需要O(n2)时间,因为必须检查矩阵中的n2?n个元素才能确定图中边的条数(邻接矩阵对角线上的n个元素都是0,因此不用检查。又因为无向图的邻接矩阵是对称的,实际只需检查邻接矩阵的一半元素)。通常把边很少的图成为稀疏图(sparse graphs)。

邻接表

如果用邻接矩阵表示稀疏图就会浪费大量内存空间,而用链接表,则是通过把顶点所能到的顶点的边保存在链表中来表示图,这样就只需要O(|V| |E|)的内存空间。

而所谓的邻接表,就是用n个链表代替邻接矩阵中的n行。链表中的结点结构至少要包含一个顶点域和一个链域。对于任意给定的链表i,链表中的结点就是与顶点i相邻的所有顶点。邻接表存储声明的C语言声明如下:

#define MAX_VERTICES 50
typedef struct node *node-pointer;
typedef struct node {    int vertex;    
   struct node *link; }; node_pointer graph[MAX_VERTICES];
int n=0;


邻接多重表

在无向图的邻接表存储表示中,每一条边(vi,vj) 都表示为两项:一项在顶点vi 的邻接表中,而另一项在顶点 vj 的邻接表中。在多重表中,各链表中的结点可以被几个链表共享,此时图中的每一条边只对应于一个结点,而这个结点出现在该边所关联的两个顶点的每个邻接链表中。
邻接多重表结点结构的C语言声明为:

typedef struct edge *edge-pointer
typedef struct edge {    short int marked;    
    int vertex1;    
    int vertex2;    edge_pointer path1;    edge_pointer path2; };


图的基本操作和算法

广度优先搜索

请先忽视下图中所有的下标,让我们从头开始。随意选择一个点,此处选择v3,作为切入点。因此到v3的距离为0。从v3出发,距离为1的结点是v1v6;继续下一步,v6已经无路可走,而与v1距离为1的是v2v4,因此对它们标记上2;继续下去,v2v4走一步都可以到v5v4走一步可以到v7,因此v5v7被标记为3。至此搜索便结束了。

这就是广度优先搜索(breadth-first search),该方法按层处理顶点。距起始点最近的那些顶点首先被求值,最远点则最后被求值,这很像对树的层序遍历(level-order traversal)。

为了实现广度优先搜索,可以使用动态链接队列。在队列中的每个顶点都包含两个域:顶点的序号和链接指针。

函数bfs所使用的队列的定义和函数原型声明为:

typedef struct queue *queue_pointer; typedef struct queue {    int vertex;    queue_pointer link; }; void addq(queue_pointer *, queue_pointer *,int);
int deleteq(queue_pointer *);

图的广度优先搜索算法:

void bfs(int v) {    node_pointer w;    queue_pointer front,rear;    front=rear=NULL;    
   printf('%5d',v);    visited[v]=TRUE;    addq(&front,&rear,v);    while(front)    {        v=deleteq(&front);        
       for(w=graph[v];w;w=w->link)        {            if(!visited[w->vertex])            {                printf('%5d',w->vertex);                addq(&front,&rear,w->vertex);                visited[w->vertex]=TRUE;            }        }    } }

图中每个顶点都被存入队列一次,所以该算法中的while循环至多重复n次。如果采用邻接表存储表示,那么该算法所需要的时间为:

d0 d1 … dn?1=O(e)

其中di 为顶点 vi 的度。

而如果采用邻接矩阵来实现,那么对于每个顶点的访问,while循环的时间为O(n),所以算法的总耗时为O(n^2) 。和接下来的深度优先搜索一样,一次广度优先搜索访问到的顶点以及与这些顶点相关联的边形成的图G的一个连通分支。

深度优先搜索

深度优先搜索内容较多,已经在下文中单独列出。

连通图

使用以上的两种搜索算法也可以用来判断一个无向图是否是连通的。具体步骤如下:

1.调用bfs(0)或dfs(0) 
2.检查是否存在未被访问过的顶点

具体代码如下:

void connected(void) {    int i;  
     for(i=0;i<n;i )    {        if(!visited[i])        {            dfs(i);            
           printf('\n');        }    } }          


算法分析:如果采用邻接表存储,那么函数dfs时间开销为O(e)。这里for循环的时间开销为O(n),所以整个算法的时间复杂性为O(n e)

双连通图

双联通图(biconnected graph)是没有关节点的连通图。对此有一个比较重要的公式如下:

low(u) = min{dfn(u), min{low(w)|w是u的儿子}, min{dfn(w)|(u,w)是一条回退边} }

回退边也叫back edge,大家顾名思义就好,下面有更多应用。

下面来段求解图的双连通分支的算法:


拓扑排序

拓扑排序(topological sort)是对有向无环图的顶点的一种排序,它使得如果存在一条从vi到vj的路径,那么在排序中vj出现在vi的后面。正是由于这个特性,如果图含有回路,那么拓扑排序是不可能的。

求拓扑排序算法的一种简单方式:选中一个没有入边的顶点,显示出该点,并将它和它的边一起从图中删除,然后对图的其余部分应用同样的方法处理。

假设每一个顶点的入度被存储且图被读入一个邻接表中,下面的代码则可以生成一个拓扑排序。

对上图应用拓扑排序的结果如下:

最短路径算法

单源最短路径问题:给定一个加权图G=(V,E)和一个特定顶点s作为输入,找出从s到G中每一个其他点的最短加权路径。

如下图所示,从v1到v6的最短加权路径的值为6(v1?v4?v7?v6),从v2v5的最短加权路径的值为5(v2?v4?v5)。

下面这个图从v5到v4的最短加权路径可就有意思了,它是1么?不是。按照v5?v4?v2?v5?v4的路径走则是一条更短的路径了,因为这是带负值回路的图。而由于带负值而引入的循环,这个循环叫做负值回路(negative-cost cycle),当它出现在图中时,最短路径问题就是不确定的了。有负值的边未必不好,但它们明显使问题更加难了。

当未指明所讨论的是加权路径还是无权路径时,如果图是加权的,那么路径就是加权的。

下面列出单源最短路径算法:


思考:找出A到所有其他顶点的最短路径以及B到所有其他顶点的最短无权路径。

如果要求所有顶点对之间的最短路径,可以用下面这个算法:


Dijkstra算法

前面的广度优先搜索中的图是无权图,而如果一旦变成了加权图,那么问题就变得困难起来了。

对于每个顶点,我们标记为known以及unknown,和上面一样,还得有一个距离的dv。与无权最短路径一样,Dijkstra算法也是按阶段进行,在每个阶段选择一个顶点v,它在所有unknown顶点中具有最小的dv,同时算法声明从sv的最短路径是known的。然后紧接着,不断的进行下去即可。

那么这个算法到底是怎么回事了?请看下图。

图中已经对权重做好了标记,以v1作为切入点,因此初始情况如下左图。

v1此时已经是known的了,而其有2个邻接点v2v4,因此可以调整为如下右图。正无穷图标标识没有连通。pv表示前一个邻接点。

毫无疑问这里会接下来走到v4去,因为v4的权重为1比v2的权重为2要小。

可能你已经看到了上图中的右图而好奇为什么下一步是v2,但是v4根本不能走到v2。因为v4能够走到的,比如v3,权重从v1开始一共是3,这比从v1v2还要大。于是就跳转回到了v2

下一步便走到了v5,因为只有值为3的权重,同样的v3也是,于是它们俩被双双标记为known。如下左图所示。

紧接着走到了v7,同时v6下调到了5 1=6得到了如下右图。至于为什么要做这个调整,是因为此时v1v7的加权为1 4=5,而v7v6的加权为1,所以就有了这个调整。

最后便顺势走到了v6完成了整个Dijkstra算法,它们都已被标记为known。

具有负边值的图

而如果一个图具有负的边值,那么Dijkstra算法就行不通了。这是因为一个顶点u被声明为known后,那就可能从某个另外的unknown顶点v有一条回到u的负的路径。而“回到”就意味着循环,前面的例子中我们已经知道了循环是多么的……

问题并非没有解决的办法,如果我们有一个常数X,将其加到每一条边的值上,这样除去负的边,再计算新图的最短路径,最后把结果应用到原图上。然后这个解决方案也是布满了荆棘,因为居多许多条边的路径变得比那些具有很少边的路径权重更重了。如果我们将s放到队列中,然后再每一个阶段让一个顶点v出队,找出所有与v邻接的顶点w,使得dw>dv cv,w,然后更新到dwpw,并在w不在队列中时将它放到队列中,可以为每一个顶点设置一个位(bit)以指示它在队列中出现的情况。

无环图

如果图是无环的,则可以通过改变声明顶点为known的顺序,或者叫做顶点选取法则来改进Dijkstra算法。这种方法通过拓扑排序来选择顶点,由于选择和更新可以在拓扑排序执行的过程中执行,因此新的算法只需要一趟就可以完成。

通过下面这个动作结点图(activity-node graph)来解释什么是关键路径分析(critical path analysis)再合适不过了。一条边(v,w)表示动作v必须在动作w开始前完成,如前面说描述的那样,这就意味着图必须是无环的。

为了进行这些运算,我们把动作结点图转化成事件结点图(event-node graph),每个事件对应于一个动作和所有与它相关的动作完成。

所以现在我们需要找出事件的最早完成时间,只要找出从第一个事件到最后一关事件的最长路径的长。因为有正值回路(positive-cost cycle)的存在最长路径问题常常是没有意义的。而由于事件结点图是无环图,那就不需要担心回路的问题了,这样一来就不用有所顾忌了。

以下是最早完成时间。

以下是最晚完成时间。

借助顶点的拓扑排序计算最早完成时间,而最晚完成时间则通过倒转拓扑排序来计算。

而事件结点图中每条边的松弛时间(slack time)代表对应动作可以被延迟而不推迟整体完成的时间量,最早完成时间、最晚完成时间和松弛时间如下所示。

某些动作的松弛时间为0,这些动作是关键性的动作,它们必须按计划结束。至少存在一条完成零-松弛边组成的路径,这样的路径是关键路径(critical path)。

网络流问题

如下左图所示,有一个顶点s,称为源点(source);还有一个顶点t,称为汇点(sink)。对于顶点c,它最大流出2,因此它的最大流入为2,如下右图所示。而t的最大流也就是5。

要想计算最大流,同样可是使用前面的思想——分阶段进行。令开始时所有边都没有流,如下中间图所示。我们可以用残余图(residual graph)来表示对于每条边还能再添加上多少流。对于每一条边,可以从容量中减去当前的流而计算出残留的流。

第一步:假设我们选择s?b?d?t路径,此时会发出2个单位的流通过这条路径的每一边,如下中间图所示。对比左图,我们做如下约定:一旦注满(使饱和)一条边,例如abbd,就将这条边从残余图(也就是中间图)去掉,如下右图所示。

第二步:接下来选择s?a?c?t路径,此时也会发出2个单位的流通过这条路径的每一边,如下中间图所示(只看s?a?c?t即可,s?b?d?t为上一步说走过的路径)。同样将残余图更新如下右图所示。

第三步:从上图的残余图中我们已经可以看出来最后一步的唯一一种走法了,也就是从s?a?d?t。做如下图所示更新。

很显然从t无法走到s,因此算法至此便终止了。因此正好5个单位的流是最大值。前面的三步我们走的如此顺利,那么问题真的如此简单么?

如果一开始我们选择了s?a?d?t,那么算法就会失败了,因为路已经被堵死了。

为了使算法得以成功运作,那么就要让流图中具有以相反方向发送流的路径,如下所示。那么对于如下右图中的残余图而言,从d返回到a的便成了3而非4,这是因为从t流到d的流量是3个单位。现在在残余图中就有a和d之间有2个方向,或者还有1个单位的流可以从a导向d,或者是3个单位的流导向相反的反向,当然,我们也可以撤销流。

紧接着如果通过da导入2个单位的流,算法就会从边(a,d)取走2个单位的流,更新流图如下。


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多