分享

天文望远镜

 听雨笑过 2016-05-19

天文望远镜(Astronomical Telescope)是观测天体的重要工具,可以毫不夸张地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。天文望远镜上一般有两只镜筒,大的是主镜,是观测目标所用的;小的叫寻星镜,是寻找目标所用的,也叫瞄准镜。目镜是单独的个体,是决定放大倍率的物品,目镜上都会有F值,这是目镜的焦距,用主镜的F值除以当前使用的目镜的F值,就是当前的放大倍率,记住,放大倍率是标准,6厘米口径的望远镜的极限放大倍率是120倍左右,8厘米的倍率最大160倍左右,超过这个范围就会看不清楚物体,所以市面上放大几百倍的望远镜都是水货,也不可能放大到那个倍率,大家不要相信。

基本信息

  • 中文名:天文望远镜
  • 英文名:Astronomical Telescope
  • 用途:观测天体的重要工具
  • 组成:由主镜、寻星镜构成
  • 优势:可见区有良好的透射
  • 集光能力:超强

优势

天文望远镜正在加载天文望远镜

地面光学观测仍是主要手段用于绝大多数处于凝聚态的天体(恒星等

),其温度从数千度到数万度,辐射集中于光学波段。

携带大量天体物理信息的谱线,主要集中于可见区;

大气在可见区有良好的透射;

有悠久的历史和丰富的经验。

为什么说问“望远镜能看多远”是错误的?

我们的肉眼就是一台光学仪器,肉眼可以看到220万光年以外的仙女座大星云,但是看不见距离地球最近的太阳系外恒星比邻星(4.2光年)。相信大家已经体会到了吧,说一个光学仪器能看多远是没有意义的,只能说看多清。

折射式

伽利略式望远镜

天文望远镜正在加载天文望远镜

1609年,伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,

这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。

开普勒式望远镜

1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。

折射式天文望远镜正在加载折射式天文望远镜

需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这

势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。

折射式的发展

1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。

天文望远镜正在加载天文望远镜

十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可

能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年在美国叶凯士天文台建成的口径102厘米望远镜和1886年在德国里克天文台建成的口径91厘米望远镜。

折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。

基本简介

望远镜,通过光学成像的方法使人看到远处的物体,并且显得大而近的一种仪器。望远距离、放大倍率、清析度为望远镜重要因素。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多