CT是英语缩写,本词条表示的是电子计算机X射线断层扫描技术。CT,英文全称computed tomography,它根据人体不同组织对X射线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。 基本信息
原理CT是用X射线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X射线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel)。扫描所得信息经计算而获得每个体素的X射线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即像素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X射线吸收系数可以通过不同的数学方法算出。 相关术语CT值 某物质的CT值等于该物质的衰减系数与水的吸收系数之差再与水的衰减系数相比之后乘以分度因素。物质的CT值反映物质的密度,即物质的CT值越高相当于物质密度越高。 即CT值=α×(μm-μw)/μw α为分度因数,其取值为1000时,CT值的单位为亨氏单位(Hu)。人体内不同的组织具有不同的衰减系数,因而其CT值也各不相同。按照CT值的高低分别为骨组织,软组织,水,脂肪以及气体。水的CT值为0Hu左右。 空间分辨率和密度分辨率前者指影像中能够分辨的最小细节,后者指能显示的最小密度差别。 层厚与层距前者指扫描层的厚度,后者指两层中心之间的距离。 部分容积效应由于每层具有一定的厚度,在此厚度内可能包括密度不同的组织,因此,每一像素的CT值,实际所代表的是单位体积内各种组织的CT值的平均数。 窗宽与窗位由于正常或异常的组织具有不同的CT值,范围波动在-1000~+1000Hu范围内,而人类眼睛的分辨能力相对有限,因此欲显示某一组织结构的细节时,应选择适合观察该组织或病变的窗宽以及窗位,以获得最佳的显示。 薄层扫描是指层厚为5mm或更薄层厚以下的扫描,用于观察病变的细节。 发明发明背景 自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X射线的吸收差别极小,因此X射线对那些前后重叠的组织的病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X射技术检查人体病变的不足。 1963年,美国物理学家科马克发现人体不同的组织对X射线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。 1967年,英国电子工程师亨斯费尔德在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。他首先研究了模式的识别,然后制作了一台能加强X射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。1971年9月,亨斯费尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。1971年10月4日,医院用它检查了第一个病人。患者在完全清醒的情况下朝天仰卧,X射线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。1972年4月,亨斯费尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。这一消息引起科技界的极大震动,CT的研制成功被誉为自伦琴发现X射线以后,放射诊断学上最重要的成就。因此,亨斯费尔德和科马克共同获取1979年诺贝尔生理学或医学奖。而后,CT已广泛运用于医疗诊断上。 发展阶段1972年第一台 CT诞生,仅用于颅脑检查;1974年制成全身CT,检查范围扩大到胸、腹、脊柱及四肢。 第一代CT机采取旋转/平移方式(rotate/translate mode)进行扫描和收集信息。由于采用笔形X射线束和只有 1~ 2个探测器,所采数据少,所需时间长,图像质量差。 第二代CT机将X线束改为扇形,探测器增至30个,扩大了扫描范围,增加了采集数据,图像质量有所提高,但仍不能避免因患者生理运动所引起的伪影 (Artifact)。 第三代CT机的控测器激增至300~ 800个,并与相对的X射线管只做旋转运动(rotate/rotate mode),收集更多的数据,扫描时间在5s以内,伪影大为减少,图像质量明显提高。 第四代CT机控测器增加到1000~ 2400个,并环状排列而固定不动,只有X射线管围绕患者旋转,即旋转/固定式 (rotate/stationary mode),扫描速度快,图像质量高。 第五代CT机将扫描时间缩短到50ms,解决了心脏扫描,是一个电子枪产生的电子束(electron beam)射向一个环形钨靶,环形排列的探测器收集信息。推出的64层CT,仅用0.33s即可获得病人的身体64层的图像,空间分辨率小于0.4mm,提高了图像质量,尤其是对搏动的心脏进行的成像。 |
|