分享

减震技术丨河北工业大学图书馆结构消能减震设计

 三泰书斋 2016-08-02

 1    工程概况

河北工业大学图书馆项目(图1)位于天津市北辰区,总建筑面积为45000m2,地下1层,地上8层,标准层层高5.1m,结构总高度40.5m。平面外围尺寸约74m×84m,东、西立面外倾,倾角为10°。结构体系为带屈曲约束支撑及黏滞流体阻尼器的消能减震钢筋混凝土框架结构。



图1 建筑效果图


建筑大部分楼层平面呈细腰的“工”字形(图2),仅2层(单侧封板)、6层及8层细腰处封板后楼层平面呈梯形(图3),图2,3中的阴影部分为楼板加强区。



图2 标准层结构平面布置图



图3 6层结构平面布置图


2      结构设计

2.1  结构方案选型

由于框架-剪力墙方案不能满足要求,因此取消剪力墙改为钢筋混凝土框架结构。经计算,该框架结构扭转周期比为0.95,不满足规范要求,且框架柱截面尺寸为900mm×900mm时,结构层间位移角仅为1/300左右。因此在楼电梯间周围及建筑外立面增加了部分钢支撑。

但要满足结构层间位移角限值要求,需要设置更多数量的钢支撑,且这些钢支撑沿竖向的布置必须上下贯通落地,平面布置必须对称且多数分布在结构外围。在不影响建筑使用功能的前提下,没有合适的位置布置全部的钢支撑。因此,结构设计中仅布置少量的落地钢支撑用于改善结构的抗扭刚度,并控制钢支撑间距在40m左右,使其均匀分布在结构平面内。

在此基础上,在部分层间位移比较大的楼层,在不影响建筑使用功能的平面位置,灵活布置了一些黏滞流体阻尼器,以增加结构的附加阻尼比,消耗地震能量,降低主体结构受到的地震作用,使其层间位移角满足规范限值要求。

考虑到本工程平面超限情况较严重,且位于高烈度区,而在大震下非线性黏滞流体阻尼器的附加阻尼比有所减小,因此本工程的钢支撑全部采用屈曲约束支撑。

最终结构体系确定为带屈曲约束支撑及黏滞流体阻尼器的消能减震钢筋混凝土框架结构。

与屈曲约束支撑相连的框架梁、柱及与阻尼器相连的框架柱均采用型钢混凝土。主要柱网尺寸为8.4m×8.4m,主要框架柱截面尺寸为900×900,800×800,主要框架梁截面尺寸为400×700。屈曲约束支撑内部主要采用人字形和单斜杆布置,立面采用单斜杆跃层布置。

结构中部细腰处薄弱楼板均按小震弹性、中震不屈服设计,细腰处及周边框架的抗震性能目标均有所提高。

 

2.2    阻尼器布置

本工程采用非线性黏滞流体阻尼器,阻尼器的参数取值及数量见表1,结构X向附加阻尼比估算见表2。




阻尼器沿竖向尽量布置在层间位移比较大的楼层,平面位置则由于建筑使用功能的限制只能布置在楼、电梯间及设备用房周围。典型阻尼器安装布置见图4。



图4 黏滞流体阻尼器布置示意图


2.3   屈曲约束支撑布置

本工程中屈曲约束支撑在小震下按不屈服设计,根据计算结果,屈曲约束支撑分为两种类型,主要设计参数取值及数量见表3。其中A型主要布置在结构内部的楼、电梯间周围,主要采用人字形布置,B型主要布置在结构的东、西立面,布置形式见图5。



图5 结构东立面屈曲约束支撑的布置示意

 

3    结构计算与分析

3.1  结构计算模型及主要参数

本工程结构设计及小震弹性计算软件采用YJKETABS,其中YJK主要用于小震反应谱法计算及结构配筋设计,ETABS则用于小震反应谱、时程分析及结构减震分析。大震动力弹塑性分析软件采用PERFORM 3D

 

3.2  反应谱法计算结果

将阻尼器的附加阻尼与结构自身阻尼统一考虑,对阻尼比为0.12的结构进行小震反应谱分析,计算结果表明:两种程序的计算结果接近,结构抗扭刚度较好,各项指标均能满足规范要求。与阻尼比为0.04的无阻尼器结构相比,阻尼比增大后结构的位移减小26%30%、首层地震剪力减小23%


3.3  黏滞阻尼器减震分析

反应谱法计算中,黏滞阻尼器的作用粗略地等效为整体结构的均匀附加阻尼比。为进一步更准确地确定黏滞阻尼器的实际减震作用,在ETABS中采用弹性时程分析法对结构进行了小震工况的减震分析,阻尼器采用非线性阻尼器连接单元模拟。

图6为时程分析选用的7条地震波的反应谱,其中2条为人工波(RH3波、RH4波),5条为天然波。各地震波反应谱在结构主要自振频率区段内与规范反应谱吻合较好。经计算,各条地震波作用下,结构的底部剪力分别大于反应谱法求得的底部剪力的65%,且多条地震波计算得到的结构底部剪力平均值大于反应谱法求得的底部剪力的80%,能够满足规范的要求。


图6 时程分析选用的地震波的反应谱

 

图7给出了典型阻尼器单元在时程分析中的滞回曲线,从图中可以看出,阻尼器的滞回曲线饱满,有效发挥了耗能作用。

 
图7 典型黏滞阻尼器滞回曲线


3.4 结构大震弹塑性时程分析

采用PERFORMD-3D对结构进行了大震动力弹塑性时程分析。分析得到的楼层最大层间位移角见表4,可知,结构满足规范对消能减震结构层间位移角从严控制的要求,且整体结构层间位移角沿楼层高度分布均匀无突变,没有薄弱层出现。


结构各部分构件的耗能比例统计见表5,由表5可见,框架梁屈服后的耗能比例为10.9%,框架柱仅为0.7%,说明少量框架柱屈服后的塑性变形非常小,整体结构为梁屈服型耗能机制。黏滞阻尼器及屈曲约束支撑的耗能比例为47.5%,耗散了约一半的地震能量,有效地保护了主体结构。


出力最大的黏滞流体阻尼器的滞回曲线见图8,由图可见,黏滞流体阻尼器最大阻尼力为988kN,其1.2倍为1185kN,小于阻尼器最大阻尼力设计参数1200kN。A型屈曲约束支撑的典型滞回曲线见图9,从图中可以看出,屈曲约束支撑在大震下屈服并有效耗散了地震能量。



根据规范ASCE/SEC 41-46,主体结构构件的抗震性能见表6。计算结果显示:1)2层以上主体结构框架梁基本处于屈服状态。2)主体结构仅14%的框架柱进入屈服状态;没有框架柱塑性变形超过CP的性能目标;细腰部位及两侧框架柱仅少量进入屈服,而且屈服后的塑性变形绝大多数控制在IO范围内,满足立即入住的要求,远小于CP的限值要求。3)屈曲约束支撑全部处于屈服状态。


本工程属于不规则高层建筑,由于采用了消能减震技术及合理的结构加强措施,具有良好的抗震性能,计算结果均满足现行规范和规程的要求。


更多内容详见《建筑结构》杂志2016年第11

更多内容详见《建筑结构》杂志2016年第11期文章,题目:《河北工业大学图书馆结构消能减震设计》;作者:孟春光,陆秀丽,刘剑峰,耿耀明,奚震勇;单位:同济大学建筑设计研究院(集团)有限公司。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多