模态分析技术从20世纪60年代后期发展至今已趋成熟,它和有限元分析技术一起成为结构动力学的两大支柱模态分析作为一种“逆问题”分析方法,是建立在实验基础上的,采用实验与理论相结合的方法来处理工程中的振动问题。 1. 什么是模态分析? 模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 2. 模态分析有什么用处? 模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为一下几个方面:
3. 模态试验时如何选择最佳悬挂点? 模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。 4. 模态试验时如何选择最佳激励点? 最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。 5. 模态试验时如何选择最佳测试点? 模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。在最佳测试点位置其ADDOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。 6. 模态参数有那些? 模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。 7. 什么是主模态、主空间、主坐标? 无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。 8. 什么是模态截断? 理想的情况下我们希望得到一个结构的完整的模态集,实际应用中这即不可能也不必要。实际上并非所有的模态对响应的贡献都是相同的。对低频响应来说,高阶模态的影响较小。对实际结构而言,我们感兴趣的往往是它的前几阶或十几阶模态,更高的模态常常被舍弃。这样尽管会造成一点误差,但频响函数的矩阵阶数会大大减小,使工作量大为减小。这种处理方法称为模态截断。 9. 什么是实模态和复模态? 按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。 10. 模态分析和有限元分析怎么结合使用?
11. 用试验模态分析的结果怎么修正有限元分析的结果?
12. 哪些有限元软件可以对实验模态进行对比?
本文整理自声振论坛,封面图片来自于北京一洋测试网站。
|
|