分享

图的基本算法(BFS和DFS)

 雪柳花明 2016-12-07

图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系。对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示。
图可以分为有向图和无向图,一般用G=(V,E)来表示图。经常用邻接矩阵或者邻接表来描述一副图。
在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为广度优先搜索(BFS)和深度优先搜索(DFS)。


广度优先搜索(BFS)
广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。
a .首先选择一个顶点作为起始结点,并将其染成灰色,其余结点为白色。
b. 将起始结点放入队列中。
c. 从队列首部选出一个顶点,并找出所有与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。如果顶点的颜色是灰色,表示已经发现并且放入了队列,如果顶点的颜色是白色,表示还没有发现
d. 按照同样的方法处理队列中的下一个结点。
基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。
用一副图来表达这个流程如下:


1.初始状态,从顶点1开始,队列={1}

2.访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}

3.访问2的邻接结点,2出队,4入队,队列={3,4}

4.访问3的邻接结点,3出队,队列={4}

5.访问4的邻接结点,4出队,队列={ 空}


从顶点1开始进行广度优先搜索:

  1. 初始状态,从顶点1开始,队列={1}
  2. 访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
  3. 访问2的邻接结点,2出队,4入队,队列={3,4}
  4. 访问3的邻接结点,3出队,队列={4}
  5. 访问4的邻接结点,4出队,队列={ 空}
    结点5对于1来说不可达。
    上面的图可以通过如下邻接矩阵表示:
int maze[5][5] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 1, 0 }, { 0, 1, 1, 1, 0 }, { 1, 0, 0, 0, 0 }, { 0, 0, 1, 1, 0 }};

BFS核心代码如下:

#include #include #define N 5using namespace std;int maze[N][N] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 1, 0 }, { 0, 1, 1, 1, 0 }, { 1, 0, 0, 0, 0 }, { 0, 0, 1, 1, 0 }};int visited[N + 1] = { 0, };void BFS(int start){ queue Q; Q.push(start); visited[start] = 1; while (!Q.empty()) { int front = Q.front(); cout < front="">< '="" ';="" q.pop();="" for="" (int="" i="1;" i=""><= n;="" i++)="" {="" if="" (!visited[i]="" &&="" maze[front="" -="" 1][i="" -="" 1]="=" 1)="" {="" visited[i]="1;" q.push(i);="" }="" }="" }}int="" main(){="" for="" (int="" i="1;" i=""><= n;="" i++)="" {="" if="" (visited[i]="=" 1)="" continue;="" bfs(i);="" }="" return="">

深度优先搜索(DFS)
深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。
初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历:
a. 选择起始顶点涂成灰色,表示还未访问
b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了
c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。
d. 上一层继续做如上操作,知道所有顶点都访问过。
用图可以更清楚的表达这个过程:


1.初始状态,从顶点1开始

2.依次访问过顶点1,2,3后,终止于顶点3

3.从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5

4.从顶点5回溯到顶点2,并且终止于顶点2

5.从顶点2回溯到顶点1,并终止于顶点1

6.从顶点4开始访问,并终止于顶点4


从顶点1开始做深度搜索:

  1. 初始状态,从顶点1开始
  2. 依次访问过顶点1,2,3后,终止于顶点3
  3. 从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
  4. 从顶点5回溯到顶点2,并且终止于顶点2
  5. 从顶点2回溯到顶点1,并终止于顶点1
  6. 从顶点4开始访问,并终止于顶点4

    上面的图可以通过如下邻接矩阵表示:

int maze[5][5] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 0, 1 }, { 0, 0, 1, 0, 0 }, { 1, 1, 0, 0, 1 }, { 0, 0, 1, 0, 0 }};

DFS核心代码如下(递归实现):

#include #define N 5using namespace std;int maze[N][N] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 0, 1 }, { 0, 0, 1, 0, 0 }, { 1, 1, 0, 0, 1 }, { 0, 0, 1, 0, 0 }};int visited[N + 1] = { 0, };void DFS(int start){ visited[start] = 1; for (int i = 1; i <= n;="" i++)="" {="" if="" (!visited[i]="" &&="" maze[start="" -="" 1][i="" -="" 1]="=" 1)="" dfs(i);="" }="" cout="">< start="">< '="" ';}int="" main(){="" for="" (int="" i="1;" i=""><= n;="" i++)="" {="" if="" (visited[i]="=" 1)="" continue;="" dfs(i);="" }="" return="">

非递归实现如下,借助一个栈:

#include #include #define N 5using namespace std;int maze[N][N] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 0, 1 }, { 0, 0, 1, 0, 0 }, { 1, 1, 0, 0, 1 }, { 0, 0, 1, 0, 0 }};int visited[N + 1] = { 0, };void DFS(int start){ stack s; s.push(start); visited[start] = 1; bool is_push = false; while (!s.empty()) { is_push = false; int v = s.top(); for (int i = 1; i <= n;="" i++)="" {="" if="" (maze[v="" -="" 1][i="" -="" 1]="=" 1="" &&="" !visited[i])="" {="" visited[i]="1;" s.push(i);="" is_push="true;" break;="" }="" }="" if="" (!is_push)="" {="" cout="">< v="">< '="" ';="" s.pop();="" }="" }}int="" main(){="" for="" (int="" i="1;" i=""><= n;="" i++)="" {="" if="" (visited[i]="=" 1)="" continue;="" dfs(i);="" }="" return="">

有的DFS是先访问读取到的结点,等回溯时就不再输出该结点,也是可以的。算法和我上面的区别就是输出点的时机不同,思想还是一样的。DFS在环监测和拓扑排序中都有不错的应用。

PS: 图文均为本人原创,画了好几个小时,转载注明出处,尊重知识劳动,谢谢~

著作权归作者所有

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多