分享

神奇的光电效应|也是个意外发现

 youxd 2016-12-21

紫外线照射到金属表面时,能使金属发射带电粒子电流,由光生电,这种后来被称为光电效应的神奇现象竟然是赫兹实验中意外的发现,莱纳德得到了一个用经典物理学无法解释的实验结果,爱因斯坦极具想像力的理论解释因没有直接的实验数据支持得不到学术界的支持,而本想用实验证明爱因斯坦理论有误的密立根却用10年的实验证实了爱因斯坦的理论正确无误。20世纪物理学的发展历史充分证明了这个意外发现的光电效应的重大科学价值。

神奇的光电效应|也是个意外发现

Εk =hν-Wo(Wo为逸出功)

如果入射光子的能量hν 大于逸出功Wo,那么有些光电子在脱离金属表面后还有剩余的能量,也就是说有些光电子具有一定的动能。因为不同的电子脱离某种金属所需的功不一样,所以它们就吸收了光子的能量并从这种金属逸出之后剩余的动能也不一样。由于逸出功Wo 指从原子键结中移出一个电子所需的最小能量,所以如果用Ek 表示动能最大的光电子所具有的动能,那么就有下面的关系式 Ek =hν - W o(其中,h 表示普朗克常量,ν 表示入射光的频率),这个关系式通常叫做爱因斯坦光电效应方程。即:光子能量 = 移出一个电子所需的能量(逸出功) + 被发射的电子的动能。

当光子能量等于逸出功时,电子动能为零。虽然电子会逸出但会停留在金属表面。

发生光电效应时,电子克服金属原子核的引力逸出时,具有的动能大小不同。金属表面上的电子吸收光子后逸出时动能的最大值,称为最大初动能。

电子吸收光子的能量后,可能向各个方向运动,有的向金属内部运动,有的向外运动,由于路程不同,电子逃逸出来时损失的能量不同,因而它们离开金属表面时的初动能不同。只有直接从金属表面飞出来的电子的初动能最大,这时光电子克服原子核的引力所做的功叫这种金属的逸出功。

意外发现的奇特效应

1886年10月,德国的海因里希·赫兹(Heinrich Rudolf Hertz,1857-1894)为证实麦克斯韦的电磁理论正忙于做火花放电实验。他的实验装置包括两套放电电极,一套用于产生振荡,发出电磁波;另一套充当接收器。赫兹细致地观察两个放电火花之间的干涉现象及其影响因素,检验电磁波的存在。研究电磁波性质的实验进行得挺成功,但赫兹并不满足,仍在想法改进实验装置。

神奇的光电效应|也是个意外发现

德国物理学家海因里希·赫兹(图片来自网络)

神奇的光电效应|也是个意外发现

赫兹实验的电路图(图片来自网络)(a、e为感应圈,b为电池,感应圈a与电极d相连,感应圈e与电极f相连, c为水银开关,p为隔板)

1886年12月初,他为了便于观察,很偶然地把接收器部分用个暗箱罩上了,实验中他意外发现接受电极间的放电火花变短了。这罕见的现象令赫兹百思不解,他又设置了不同的实验条件,继续进行细致观察。他变动两套电极之间的距离、改变接收器周围的气压、分别屏蔽两套电极、用光谱不同区域的光及不同的光源照射接收器、在两套电极之间插入不同材质的金属板等,最终发现这种现象的发生既非电磁的屏蔽作用,也不由可见光照射引起,只是当紫外线照在负电极上时能看到最明显的效果。1887年,赫兹在《物理学年鉴》上发表了题为《论紫外光对放电的影响》的论文,描述了他的发现。该论文引起了广泛的反响,吸引了不少物理学家对此现象进行研究。

赫兹后来回顾这段经历时说:“在光和电现象之间,这种直接的相互作用的关系还是极其罕见的”,“这是一种令人惊奇而全然无知的效应”。这个光能变成电能的奇特效应后来被称为光电效应。

无法解释的实验结果

1891年,德国的菲利普·莱纳德(Philipp Eduard Anton vonLénárd,1862-1947)在赫兹的指导下开始从事阴极射线特性的研究,但他对赫兹发现的光电效应也十分感兴趣。1902年,在阴极射线研究取得突破性进展后,莱纳德便将自己的研究方向转向了光电效应。他用实验对产生光电效应过程中各相关物理量间的关系进行研究,发现了一个重要规律:光电效应产生的光电子数目随入射光的强度增加而增加,但光电子的速度,或者说它们的动能只与入射光的频率有关,而与入射光的强度无关。莱纳德的这个实验结果用经典物理学无法解释,且与当时的物理学理论相冲突。根据经典理论,电子接受光的能量获得动能,光越强能量越大,电子的速度也就越快。

神奇的光电效应|也是个意外发现

德国物理学家菲利普·莱纳德(图片来自网络)

极具想像力的理论

1905年3月,26岁的犹太裔的阿尔伯特·爱因斯坦(Albert Einstein,1879-1955)当时还是瑞士伯尔尼专利局的三级技术员,他受普朗克量子假设的启发,极具想像力地运用相对论和光量子理论解释了莱纳德光电效应实验的结果,列出了光电方程式,他在德国《物理年鉴》上发表了题为《关于光的产生和转化的一个试探性观点》论文。

为何光电子能量只与入射光频率有关而与入射光强度无关?如果入射光束的强度微弱,但只要具有足够高的频率,一定会产生一些高能量光子来促使束缚电子逃逸。而辐照度很强的入射光束,如果频率低于某个临界频率则无法给出任何高能量光子来促使束缚电子逃逸。

爱因斯坦的这些论述与詹姆斯·麦克斯韦光的波动理论相互矛盾,无法解释光波的折射性与相干性(光的波动理论已经过严格的理论检验,并通过精密实验给予证明),且该论述与物理系统的能量“无穷可分性假说”也相互矛盾,加之爱因斯坦的理论分析没有直接的实验数据支持,因而当时没有得到学术界的支持和理解。

神奇的光电效应|也是个意外发现

犹太裔物理学家阿尔伯特·爱因斯坦(图片来自网络)

历经10年的实验验证

美国的罗伯特·密立根(Robert Andrews Millikan,1868-1953)注意到了爱因斯坦的这篇论文,他并不认同爱因斯坦的理论。在此后的十年,他花了很大精力进行光电效应的实验研究,本意是希望进一步证明经典理论的正确性。他的实验技术精湛,对光电效应中的几个重要物理量进行了精确的测量。

神奇的光电效应|也是个意外发现

美国物理学家罗伯特·密立根(图片来自网络)

神奇的光电效应|也是个意外发现

密立根实验装置示意图(图片来自网络)

神奇的光电效应|也是个意外发现

密立根的实验结果:6根曲线分别对应于汞的6根特征谱线(横坐标为电压,纵坐标为光电流)(图片来自网络)

1916年,密立根发表了他的实验结果,列出了6种不同频率的单色光测量反向电压的截止值与频率关系的曲线,验证了爱因斯坦1905年提出的光电方程式,反而证实了爱因斯坦的理论正确无误。

爱因斯坦对密立根的光电效应实验给予高度评价,他指出:“我感激密立根关于光电效应的研究,它第一次判决性地证明了在光的影响下电子从固体发射与光的振动周期有关,这一量子论的结果是辐射的粒子结构所特有的性质。”

正是由于密立根全面地证实了爱因斯坦的光电方程,光电效应从理论和实验方面均得到了确认,光量子理论开始得到学术界的承认,而20世纪物理学的发展历史也充分证明了这个意外发现的光电效应的重大科学价值。

爱因斯坦因为“对理论物理学的成就,特别是光电效应定律的发现”获得了1921年诺贝尔物理学奖,而密立根因为“关于基本电荷以及光电效应的工作”获得了1923年诺贝尔物理学奖。近百年来,以光电效应为基础的各类光电探测器已广泛应用于科学研究、军事、冶金、电子、机械、化工、地质勘探、医疗、生物医药和环境监测等领域。

参考资料

1、钱长炎,赫兹对光电效应的研究及其历史意义,《自然杂志》第25卷第2期

2、光电效应理论的是怎样被承认的,http://learning.sohu.com/20160511/n448807177.shtml

3、Secondary electronemission from insulators,https://en./wiki/Louis_Winslow_Austin;http://onlinelibrary./doi/10.1002/andp.19023141003/abstract

4、郝详、石亚东,“光电效应”实验的发展脉络,《物理通报》2015年第8期

5、Baidu百科,光电效应,http://baike.baidu.com/link?url=oSWl8MGMtMqRiXsTXI21ooyNNZkKtCxq3VoEKI90VgwwD2SOb-v4stDA6ExI9XxoJljD08w6Itg-SojrcbIHNtDLbxzt_K_Fn4laUwT1fIIb3munTD0Mx0Wlb4dcrTbq

6、光电效应实验,http://edu6./tkc471a/1/11gdxy.htm


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多