分享

【工务资料】钢轨探伤工 (一)

 昵称19229469 2017-03-09

第一章 无损检测基础知识

第一节 无损检测概述

一、无损检测概念

(一)无损检测的定义

无损检测(NDT)是一门综合性的应用科学技术,它是在不改变或不影响被检对象使用性能的前提下,借助于物理手段,对其进行宏观与微观缺陷检测,几何特性度量、化学成分、组织结构和力学性能变化的评定,并进而就其使用性能做出评价的一门学科。日常生活中无损检测方法常被使用,如买西瓜用手轻轻拍打西瓜外皮,听声响或凭手感,想猜一下西瓜的生熟,这是人们常有的习惯,这种并不损坏西瓜而知西瓜生熟的检测方式就是生活中的无损检测。不过,需要指出的是,类似拍皮猜瓜这些古老而简单的无损检测方法尽管至今仍在沿用,但因它们对缺陷的位置和大小做不出基本相符的判断,而不被视为无损检测的技术方法。真正的技术方法必须确保无损检测结果的准确性和可重复性。

(二)无损检测的作用

随着现代工业的发展,无损检测已经广泛深入到产品的设计、制造、使用等各个方面,它在产品质量控制中所起的不可取代的重要作用已为日益众多的科技人员和企业家所认同。在设计阶段,设计单位要充分考虑无损检测的实际能力,以保证结构设计要求与无损检测的灵敏度、分辨率和可靠性相一致;在制造阶段,为确保产品质量达到设计要求,同样要运用无损检测技术,根据一定标准对原料的缺陷以及非均质性进行鉴定和评价;在使用阶段,为保证使用的可靠性,使用部门必须根据设计部门规定的周期和方法及制造部门所提交的检测细则对指定零部件进行可靠的无损检测甚至于实时监控。事实上,就是用户订货,也常常通过无损检测技术进行验收检查,有人说,现代工业是建立在无损检测基础之上的,此并非言过其实之词,现代无损检测技术不仅形式多样,技术手段也日臻成熟,在铸件、锻件、棒材、粉末冶金制件、焊接件、非金属材料、陶瓷制件、复合材料、锅炉、压力容器、核电设备等许多领域都有较好的应用,对于改进产品的设计制造工艺、降低制造成本以及提高设备运行的可靠性等具有十分重要的意义,其作用主要有:

1.无损探伤 对产品质量作出评价。无论是铸件、锻件、焊接件、钣金件或机加工件以至非金属结构都能应用无损检测技术探测它表面或内部缺陷,并进行定位定量分析。

2.材料检测 用无损检测技术测定材料的物理性能和组织结构,能判断材料的品种和热处理状态,进行材料分选。

3.几何度量 产品的几何尺寸、涂层和镀层厚度、表面腐蚀状态、硬化层深度和应力密度都能用无损检测技术测定,根据测定结果利用断裂理论确定是否进行修补和报废处理,对产品进行寿命评定。

4.现场监视 对在役设备或生产中的产品进行现场或动态检测,将产品中的缺陷变化信息连续的提供给运行和生产部门实行监视。在高温、高压、高速或高负载的运行条件下尤其需要无损检测。例如压力容器和钢轨的探伤等。

(三)无损检测的特点

1.不破坏被检对象。

2.可实现100%的检验。

3.发现缺陷并做出评价,从而评定被检对象的质量。

4.可对缺陷形成原因及发展规律做出判断,以促进有关部门改进生产工艺和产品质量。

5.对关键部件和关键部位在运行中作定期检查,甚至长期监控以保证运行安全,防止事故发生。

(四)无损检测的发展

从无损检测的作用和特点表明,无损检测技术是工业发展必不可少的有效工具,它必将随着工业生产的进步而发展,早期的无损检测称为无损探伤(NDI),它的作用是在不损坏产品的前提下发现人眼无法看到的缺陷,以满足工程设计中的强度要求。第二阶段称为无损检测(NDT),这个阶段始于70年代,它不但检测最终产品,而且要测量各种工艺参数,制成工件后还需知道它的组织结构、晶粒大小和残余应力等。第三阶段称为无损评价(NDE),尤其对航空、航天、核电、能源、交通、石油和化工等方面的机械产品,在加强检测同时注重产品质量的评价,确保每一件产品都是合格的。在工业发达国家已从一般无损评价发展到自动无损评价,采用计算机来进行检测和评价,尽可能减少人为因素的影响,这在超声检测的发展中成效突出,例如钢轨探伤车。这种发展趋势促使无损检测人员应具有更广的知识面,更深厚的基础理论和更高的综合分析能力。

二、常用无损探伤方法*

无损探伤是无损检测(包括探伤、测量、评价)的一个重要组成部分,它是对材料、工件或组件进行非破坏性检测和分析,以发现材料和构件中非连续性宏观缺陷(如裂纹、夹渣、气孔等)为主要目的的检验。无损探伤的方法种类较多,据美国国家宇航局调研分析,认为可分六大类约70余种,但在实际应用中较普遍的为超声探伤、射线探伤、磁粉探伤、渗透探伤、涡流探伤五种常规方法,除此之外,还有红外监测、声振检测、激光全息摄影、微波探伤、同位素射线示踪等非常规探伤技术。鉴于超声波探伤在目前占有举足轻重的地位,本书将在后面予以重点介绍,以下针对其它几种常规探伤简要介绍基本原理、主要特点和适用场合。

(一)射线探伤(RT

射线通常指Χ射线、γ射线、α射线、β射线和中子射线等,其中,Χ射线、γ射线和中子射线因易于穿透物质而在产品质量检测中获得了广泛应用,工业应用中的射线探伤技术大体上可以分为:射线照相探伤技术、射线实时成相探伤技术、射线层析(CT)探伤技术等,常规的射线探伤技术一般指射线照相探伤技术(以下均以此技术介绍),其基本原理(图11):射线在穿过物质的过程中,会受到物质的散射和吸收作用,因物体材料、缺陷和穿透距离的不同,射线强度将产生不同程度的衰减,这样,当把强度均匀的射线照射到物体的一侧,使透过的射线在物体另一侧的胶片上感光,把胶片显影后,得到与材料内部结构和缺陷相对应的黑度不同的图像,即射线底片。通过对图像的观察分析,最终确定物体缺陷的种类、大小和分布情况。

射线探伤适用于体积形缺陷探测。如气孔、夹碴、缩孔、疏松等,对片形缺陷检测较难。

(二)磁粉探伤(MT

磁粉探伤是指把钢铁等铁磁性材料磁化后,利用缺陷部位所发生的磁极吸附磁粉的特性,显示缺陷位置的方法。把一根中间有横向裂纹的强磁性材料试件进行磁化后(图12),可以认为磁化的材料是许多小磁铁的集合体,在没有缺陷的连续部分,由于小磁铁的NS磁极互相抵消,而不呈现出磁极,但在裂纹等缺陷处,由于磁性的不连续将呈现磁极,在缺陷附近的磁力线绕过空间出现在外面,此即缺陷漏磁,缺陷附近所产生的称作为缺陷的漏磁场,其强度取决于缺陷的尺寸、位置及试件的磁化强度等,这样,当把磁粉散落在试件上时,在裂纹处就会吸附磁粉,称为缺陷磁粉迹痕,由此可以发现缺陷的部位。

磁粉探伤仅适用于铁磁材料的表面或近表面缺陷的检测,其探伤灵敏度高低受试件表面光洁度、缺陷形状和取向、磁化方法和范围等影响。磁粉探伤能确定缺陷的位置、大小和形状,但对缺陷深度确定较难。磁粉探伤的方法可分为连续法和剩磁法两种。

(三)渗透探伤(PT

渗透探伤是指将溶有荧光染料(荧光探伤)或着色染料(着色探伤)的渗透液施加在试件表面,渗透液由于毛细作用能渗入到各型开口于表面的细小缺陷中,此时清除附着在表面的多余渗透液,把工件表面多余的渗透液清洗干净,但不得把已深入缺陷内的渗透液清洗掉,然后经干燥和施加显像剂后,在黑光或白光下观察,缺陷处可分别相应地发出黄绿色的荧光或呈现红色,从而能够用肉眼检查出试件表面的开口缺陷。渗透探伤的基本步骤见图13。渗透探伤除荧光渗透探伤和着色渗透探伤方法外,还有滤出粒子探伤法,氪气体渗透成像等。

渗透探伤适用于检测金属和非金属材料表面开口的裂纹、折叠、疏松、针孔等缺陷。它能确定缺陷的位置、大小和形状,但难于确定其深度,不适用于探测多孔性材料及材料内部缺陷。

(四)涡流探伤(ET

涡流探伤是将通有交流电的激励线圈靠近某一导电试件(图14),由于电磁感应作用,进入试件的交变磁场可在试件中感生出方向与激励磁场相垂直的、呈旋涡状流动的电流(涡流),此涡流产生磁场会影响原磁场的变化,从而引起线圈阻抗的变化,通过对线圈阻抗变化的测量,就可得知试件中产生的涡流状况,从而获悉与试件有关的一些参量。当试件内有缺陷时,涡流因流动途径的变化,使涡流磁场也相应变化,经试验线圈检出异常磁场的变化量,可获得缺陷的信息。

由于涡流是交流电,具有集肤效应,在导电试件的表面较多,随着涡流向试件内部的深入,电流按指数函数而减少,因此,涡流探伤主要适用于金属和石墨等导电材料的表面和近表面缺陷,通常能够确定缺陷的位置和相对尺寸,不适用于非导电材料的缺陷检测。

以上介绍了四种常用探伤方法,超声波探伤将在后面详细叙述。在实际应用当中,射线探伤和超声波探伤适合于内部缺陷探测,而磁粉、渗透、涡流探伤则适合于表面缺陷探测,它们各有其优越性,选择哪一种探伤方法进行无损检测,必须结合缺陷具体情况合理配合使用,才会收到更好的效果。几种探伤方法的比较见表11

项目

探伤

方法

射线

1.适用于几乎所有材料

2.探伤结果(底片)显示直观、便于分析

3.探伤结果可以长期保存

4.探伤技术和检验工作质量可以监测

1.检验成本较高

2.对裂纹类缺陷有方向性限制

3.需考虑安全防护问题(如Χγ射线的传播)

检测铸件及焊接件等构件内部缺陷,特别是体积型缺陷(即具有一定空间分布的缺陷),

磁粉

1.直观显示缺陷的形状、位置、大小

2.灵敏度高,可检缺陷最小宽度约为1μm

3.几乎不受试件大小和形状的限制。

4.检测速度快、工艺简单、费用低廉

5.操作简便、仪器便于携带

1.只能用于铁磁性材料

2.只能发现表面和近表面缺陷

3.对缺陷方向性敏感

4.能知道缺陷的位置和表面长度,但不知道缺陷的深度

检测铸件、锻件、焊缝和机械加式零件等铁磁性材料的表面和近表面缺陷(如裂纹)

渗透

1.设备简单,操作简便,投资小

2.效率高(对复杂试件也只需一次检验)

3.适用范围广(对表面缺陷,一般不受试件材料种类及其外形轮廓限制)

1.只能检测开口于表面的缺陷,且不能显示缺陷深度及缺陷内部的形状和尺寸

2.无法或难以检查多孔的材料,检测结果受试件表面粗糙度影响

3.难于定量控制检验操作程序,多凭检验人员经验、认真程度和视力的敏锐程度

用于检验有色和黑色金属的铸件、锻件、粉末冶金件、焊接件以及各种陶瓷、塑料、玻璃制品的裂纹、气孔、分层、缩孔、疏松、折叠及其它开口于表面的缺陷

涡流

1.适于自动化检测(可直接以电信号输出)

2.非接触式检测,无需耦合剂且速度快

3.适用范围较广(既可检测缺陷也可检测材质、形状与尺寸的变化等)

1.只限用于导电材料

2.对形状复杂试件及表面下较深部位的缺陷检测有困难,检测结果尚不直观,判断缺陷性质、大小及形状尚难

用于钢铁、有色金属等导电材料所制成的试件,不适于玻璃、石头和合成树脂等非金属材料

超声波

1.适于内部缺陷检测,探测范围大、灵敏度高、效率高、操作简单

2.适用广泛、使用灵活、费用低廉

1.探伤结果显示不直观,难于对缺陷作精确定性和定量

2.一般需用耦合剂,对试件形状的复杂性有一定限制

可用于金属、非金属及复合材料的铸、锻、焊件与板材



    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多