分享

北京大学李毅课题组在昆虫共生菌帮助病毒传播方面取得最新发现

 坐山观海在路上 2017-03-14




许多的昆虫,包括蚊子、蚜虫、飞虱和叶蝉是病毒传播的传播介体。这些昆虫体内都具有共生菌,一般来说,昆虫体内的共生菌可以通过增强昆虫的免疫系统,从而间接影响病毒的传播。但是,我们并不清楚昆虫体内的共生菌是否可以与病毒直接发挥相互作用并调控病毒的传播。


课题组通过多种细胞生物学手段研究发现,叶蝉的共生菌Sulcia可以与水稻矮缩病毒直接发生相互作用,并携带病毒经过上皮组织进入叶蝉卵母细胞。分子实验证明,这种相互作用是在黑尾叶蝉的外壳蛋白P2与共生菌Sulcia的外膜蛋白之间发生。用抗生素处理叶蝉体内的共生菌后,叶蝉若虫期的生长发育会受到明显的阻碍,F1代和F2代的传毒效率受到严重的影响。该研究揭示了一个病毒经卵传播的新模型。该研究结果对理解虫传病毒的分子机制以及虫传病害的控制具有重要的意义。


李毅教授为该文的共同通讯作者。本研究得到了国家自然科学基金和国家重大基础研究计划973项目等经费的资助。

Sulcia携带水稻矮缩病毒(RDV)进入雌性黑尾叶蝉的卵细胞。 (A).RDV的外壳蛋白P2与细菌Sulcia的外膜蛋白OMP直接相互作用,细菌外膜凹陷形成包含病毒的椭圆形小泡。(B).RDV病毒粒子直接附着在Sulcia的外壳上,通过Sulcia携带着病毒通过上皮栓进入卵细胞。

李毅教授


1997年10月—至今,教授,博士生导师,北京大学生命科学学院
2001年8月—2003年7月,访问学者,美国加州大学贝克莱分校
2000年2月—2000年5 月,从事合作研究,美国Samuel Noble Foundation
1997年1月—1997年8 月,从事合作研究,德国联邦生物研究中心
1994年—1997年,副教授,北京大学生命科学学院
1992年—1994年,博士后,北京大学生命科学学院


本实验室主要兴趣在于:
病毒与植物宿主的相互作用以及病毒侵染对宿主发育的影响和致病机制;
植物宿主对病毒的防御机制与病毒的反防御机制;
病毒与传播介体昆虫宿主的相互作用以及介体传播病毒机制;
病毒对昆虫介体免疫系统的干扰和介体的抗病毒免疫机制。


代表论文:

1.Jin L., Qin Q.Q., Wang Y., Liu L.F., Wen X., Ji S.Y., Wu J.G., Liu R.F., Wei C.H., Ding B., Li Y. Viral protein blocks auxin signaling through interaction with IAA10 and enhances virus infection in rice. PLoS Pathogens, 2016 (In revision). 

2. Wu J.G., Yang R.X., Yang Z.R., Zhao S.S., ..., Cao X.F., Li Y. Blocking MicroRNA528 Activity Enhances Rice Antiviral Defense through Regulating ROS Accumulation. Nature Plants, 2016 (In revision).
3. Wang Y., Qu J., Ji S., Wallace A.J., Wu J., Li Y., Gopalan V., Ding B. A Land Plant-specific Transcription Factor Directly Enhances Transcription of a Pathogenic Noncoding RNA Template by DNA-dependent RNA Polymerase II. The Plant Cell, 2016, 28(May) (On line).
4. Wu J.G., Yang Z.R., Wang Y., Zheng L.J., Ye R.Q., Ji Y.H., …Qi Y.J., and Li Y. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife, 2015(4). 
5. Cao M., Du P., Wang X., Yu Y.Q., Qiu Y.H., Li W.X., Gal-On A., Zhou C.Y., Li Y., Ding, S.W. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. PNAS, 2014, 111(40):14613-14618. (共同通讯作者)
6. Geng Y.T., Ren F.L., Tomoeda M., Kishida M., Qiu Y., Wang Y.Y., Jin L., Su F., Tomita Y., Li Y., Chang Z.J. Insulin receptor substrate 1/2 (IRS-1/2) regulates Wnt/β-Catenin signaling through stabilizing Dishevelled. J. Biol. Chem., 2014, 289:11230-11241. (共同通讯作者)   
7. Liu L.F., Jin L., Huang X.H., Geng Y.T., Li F., Qin Q.Q., Wang R., Zheng L.J., Ji S.Y., Zhao S.S., Xie Q., Wei C.H., Xie C., Ding B., and Li Y. OsRFPH2-10, a rice RING-H2 finger type E3 ubiquitin ligase, plays an important role in rice antiviral defense in the early stages of Rice dwarf virus infection. Molecular Plant, 2014, 85:2975-2979.   
8. Seo J.K., Wu J.G., Li Y., Jin H.L., Contribution of small RNA pathway components in plant immunity. Mol Plant Microbe Interact, 2013, 26:617-625. (共同通讯作者)   
9. Jiang L., Qian D., Zheng H., Meng L.Y., Chen J., Le W.J., Zhou T., Zhou Y.J., Wei C.H., Li Y. RNA-dependent RNA polymerase 6 of rice (Oryza sativa) plays role in host defense against negative-strand RNA virus, Rice stripe virus. Virus Research, 2012, 163:512-519.   
10. Du P., Wu J.G., Zhang J.Y., Zhao S.Q., Zheng H., Gao G., Wei L.P., Li Y. Viral Infection Induces Expression of Novel Phased MicroRNAs from Conserved Cellular MicroRNA Precursors. PLoS Pathogens, 2011, 7(8) e1002176.    
11. Pu Y.Y, Kikuchi A., Moriyasu Y., Tomaru M., Jin Y., Suga H., Hagiwara K., Akita F., Shimizu T., Netsu O., Suzuki N., Uehara-Ichiki T., Sasaya T., Wei T.Y., Li Y., and Omura T. Rice Dwarf Viruses with Dysfunctional Genomes Generated in Plants Are Filtered Out in Vector Insects: Implications for the Origin of the Virus. Journal of Virology, 2011, 85:2975-2979.    
12. Ren B., Guo Y.Y., Gao F., Zhou P., Meng Z., Wu F., Wei C.H., Li Y. Multiple functions of Pns10 encoded by Rice dwarf virus Pns10 in suppressing systemic RNA silencing. Journal of Virology, 2010, 84:12914-12923.      

13. Zhang X.M., Du P., Lu L., Xiao Q., Wang W.J., Cao X.S., Ren B., Wei C.H., Li Y. Contrasting effects of HC-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato aspermy cucumovirus on the accumulation of siRNAs. Virology, 2008, 374:351-360.    

14. Zhou F., Pu Y.Y., Wei T.Y., Liu H.J., Deng W.L., Wei C.H., Ding B., Omura T., Li Y. The P2 capsid Protein of the nonenveloped Rice Dwarf Phytoreovirus induces membrane fusion in insect host cells. PNAS, 2007, 104:19547-19552.    

15. Zhou F., Wu G., Deng W.L., Pu Y.Y., Wei C.H., Li Y. Interaction of rice dwarf virus outer capsid P8 protein with rice glycolate oxidase mediates relocalization of P8. FEBS Letter, 2007, 581:34-40.    
16. Liu H.J., Wei C.H., Zhong Y.W., Li Y. Rice black-streaked dwarf virus outer capsid protein P10 has self-interactions and forms oligomeric complexes in solution. Virus Research, 2007, 127:34-42.   
17. Cao X.S., Zhou P., Zhang X.M., Zhu S.F., Zhong X.H., Xiao Q., Ding B., Li Y. A RNA silencing suppressor from rice Phytoreovirus. Journal of Virology, 2005, 79:13018-13027. Highlighted in the issue.   
18. Zhu S.F., Chen M., Li Y. Interaction of the P2 protein of rice dwarf Phytoreovirus with ent-kaurene oxidase resulting in reducing GA content and this may further cause dwarf in RDV infected rice plants. Plant Physiology, 2005, 139:1935-1945.    
19. Leister T., Dahlbeck D., Day, D., Li, Y., Staskwicz, B. Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. The Plant Cell, 2005, 17:1268-1278.       
20. Li Y, Bao Y, Wei C, et al. Rice dwarf Phytoreovirus segment S6-encoded nonstructural protein has a cell-to-cell movement function. Journal of Virology, 2004, 78: 5382-5380.  

本文编辑:Anny  


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多