3月1日,四部委印发的《促进汽车动力电池产业发展行动方案》通知中还有一条关于锂离子动力电池的使用环境的温度目标:“。。。使用环境达-30℃到55℃。。。”。这里提出了动力电池的温度要求:电池在低温-30℃、高温55℃可以使用,但是没有明确说明是电池单体、模块或电池包/系统,也没有说明在这个温度范围内如何使用电池(或者说没有提出在这个温度范围的性能要求),特别是低温-30℃的要求(比如在此温度下放电容量要求、功率要求等)。 关于动力电池在高温或低温下的要求,首先来看一下相关的法规标准是如何规定的: 1.QC/T743-2006 电动汽车用锂离子蓄电池。这是之前实行的老的电池标准,跟高温、低温相关的要求主要是针对单体电池的:
2.GB/T 31486-2015 电动汽车用动力蓄电池电性能要求及试验要求。这是关于单体电池和模块的最新国标要求,其中关于电池模块在高温和低温下的性能要求为:
3.GB/T 31467.1/2-2015 电动汽车用锂离子动蓄电池和系统 第1/2部分:高功率/高能量应用测试规程。该标准系列是关于电池包/系统的要求,仅仅提供测试方法,并不提供具体要求。跟高、低温相关的要求为:
取最大值和最小值,可以看到目前标准对温度的要求是:
对比《促进汽车动力电池产业发展行动方案》的目标可以看到: 1.电池单体/模块
2.电池包/系统
图1是锂离子电池在不同低温下的放电容量曲线示意图(这里用来表示一般的变化趋势)。跟室温20℃相比,低温-20℃下容量衰减已经比较明显,到-30℃是容量损失更多,-40℃下容量连一半都不到了。 图1 锂离子电池在低温下的容量衰减 这里看一下影响低温性能的因素。通过对比容量和电解液电导率关系(图2)可以看到,温度越低,电池电解液的电导率越低。当电导率下降之后,溶液传导活性离子的能力就下降,表现为电池内部反应的阻力就会增加(这个阻力在电化学里面用阻抗表示),造成放电能力下降,即容量下降。更进一步,通过测量电池内部各部分(正极、负极、电解液)阻抗可以看到各部分对电池阻抗的影响(图3)。当温度<><>cell表示)。 图2 不同温度下电池容量和电解液电导率关系 图3 不同温度下电池的内部各部分的阻抗大小 法国著名电池公司Saft曾经通过2Ah圆柱电池(正极材料NCM,使用PVdF粘结剂,负极材料碳,使用CMC/SBR粘结剂)研究了高温对电池性能的的影响,对比了两个电池在不同高温下的情况: · B2电池-首先在60℃循环2次,然后在85℃下循环 · B3电池- 首先在60℃循环2次,然后在120℃下循环 从图4可以看到,B2电池在85℃下循环26次之后,容量损失大约7.5%,电池阻抗增加100%;B3电池在120℃下循环25次之后,容量损失大约22%,电池阻抗增加高达1115%。 图4 B2、B3电池在高温下的循环曲线和电池阻抗增加曲线 采用图5的模型说明高温120℃下电池正极的变化。在120℃下,部分正极粘结剂PVdF从Part 1区域迁移到正极表面,这造成Part 1区域的粘结剂含量下降,活性材料NMC材料由于粘结剂的缺失,造成了电化学反应的能力下降。在Part 2区域,这部分是正极的主体,粘结剂含量正常,高温影响不大,活性材料可以正常进行反应。 图5 正极在120℃下循环之后的示意图 通过分析负极表面可以看到高温对负极的影响(图6)。图6a是负极的初始状态,在85℃下循环之后,负极表面出现了常见的固体电解质相(图6b负极表面被新生成的物质覆盖,造成表面形貌跟初始形貌的不同,有些小的球形物质。SEI:Solid Electrolyte Interface)。当温度上升在120℃时,生成了更多的SEI(图6c,负极表面被更多的颗粒覆盖),消耗了更多的活性锂离子,造成了容量的下降。 图6 负极表面的形貌变化 总的来说,影响电池高温、低温的因素可以概括为:电解液的电导率、界面阻抗、SEI膜等,这些因素综合作用在一起,影响了电池的性能。一般的来说,提高电池各组分的电导率或者导电性(包括选择导电性更好的活性材料、优化电解液成分、改善负极SEI膜成分、抑制正极表面物质的溶出等),从而降低电池整体的阻抗,对于提升高温、低温性能是有所帮助的。锂离子电池对温度的适应性就跟人体一样,过高、过低的温度都不利于其发挥最大的功能,选择合适的材料、优化结构设计、定制合适的使用条件,才能充分发挥其性能。 参考 J. Power Sources 115 (2003) 137-140; J. Power Sources 236 (2013) 265-275 作者:129Lab |
|