分享

水冷的秘密1 of 4-水冷基础知识篇V0.8-part2-CHIPHELL首发

 新华书店好书榜 2017-03-27
一楼的文章已经很长,在第二页继续发,以免过长的帖子影响大家的浏览.....一楼文章的末尾会附有后续文章的链接。 另外,本文中所有图片的图注都用蓝色文字放在图片下方,而不是一般的先图注再图片,这个是个人的写作习惯,希望大家先看图有自己的思考,然后再看见蓝色字的图注了解我想要表达的东西~~~


推荐大家先阅读版主assisterah 的《水冷入门指南》(如果你还没有读过的话),assisterah的这篇文章短小精悍,图片张张精美,阅读压力比较小,而且关键的要点阐述都很明确,很适合用来快速了解正确观念,而我的长篇大论相比之下阅读起来会有些吃力,可能让人感觉在看教科书,呵呵。

我和assisterah在有些地方的习惯和观念不完全相同,这些不同也直接反映在我们的文章中,先阅读assisterah的文章,然后带着批判眼光来看我的文章,或许有助于初学者对水冷有更清晰的认识。


基础篇在2010年11月16日进行了编辑,增加了一些诸如紫铜等级、FPI等细节部分,修正了因为个人认识不足而犯的一些错误(比如冷排锡焊工艺),故版本号也从V0.8上升到V0.9。感谢所有关注和支持拙文的朋友,特别感谢那些花时间为拙文纠错的朋友!

水冷的秘密-水冷基础知识篇(网络版V0.9)

文/芒果   图/Kone Pawel CWPP 亨利水冷 芒果

谨以此文怀念我的好友陈光旭,你一直喜欢我这种啰嗦冗长的所谓详解文章,用你的话来说是“读得很过瘾”,而你那些独特的视角和观点也每每令我灵感突现,获益良多。不久前在我们在网上聊天时还说起这篇文章,你说很期待......可懒惰的我在完成网络版全文后,却一直懒于把这篇庞然大物贴上网......如今生死两茫茫,我只能独自顿足痛悔,再没有机会与你一起迸出火花。

如果时光能倒流,即使那草稿当时还稍嫌凌乱,我也会第一时间让你先睹为快;如果时光能倒流,即使我熬夜后蓬头垢面双目浮肿,也会笑呵呵的与你和Lucky一起拍下那张照片......光旭,忆起这些年的点点滴滴,我觉得自己以后应当更潇洒些,更宽容些,人生苦短又无常,其实真的不必那么矫情。

你已停下了脚步,我却能感到你仍在背后笑着看我,一如你平日的灿烂与真诚。

——芒果 于2010年8月17日  广州

网络版前言

电脑水冷,这种被不少用户视为**的玩法,其实远没有想象中那么神秘。三年前我尝试用水冷来解决一台工作站显卡温度过高的问题,从此就一直对水冷很着迷。在这个酷热的夏天,或许会有些朋友遇到我当年的困扰:既要死命超频,又想温度悦目;追求耳根清净,外观又求YY......如此,水冷或许就是解决这一切的良方。

刚开始玩水冷时,我深受网络中特别是中文网络中入门教程匮乏之苦,整天好像无头苍蝇一般在网上乱转,求知若渴却收获聊聊。从那时起我就在想,等哪天把水冷基本弄明白了,一定要把自己的心得分享给大家。三年后的今天,中文网络上完整的水冷入门教程匮乏依旧,故我撰写了拙文,希望它能起到一点儿抛砖引玉的作用。

拙文的杂志版已经在《微型计算机》连载,分别是2010年7月下、8月上、8月下的“经验谈”栏目。受杂志版面限制、以及“经验谈”栏目是黑白页面的缘故,不得已做了相当大幅度的缩减;而网络版则因为没有篇幅和色彩限制,得以尽情发挥。

身为微机的老作者,我习惯于把自己的文字简单分为两类:要写的和想写的。毫无疑问,本文就是我想写的那种,事实上网络版的最终篇幅是杂志版的七倍。杂志版的一点点稿费可算作是营养费,网络版则完全是我个人的无偿奉献,只为让更多对水冷有兴趣、却又不得其门而入的朋友能够少点迷惑......我衷心希望大家能喜欢我这些小小的心得。这次自不量力的强行撰写拙文,让我有机会系统的把自己零散的认识整理和表达出来,对我自己也有一种温故而知新的提高妙用,这或许就是上天对共享精神的一点小小奖励。

拙文分为“基础篇”、“进阶与规划篇”、“实战篇”、“导购篇”四大部分,由浅入深的对水冷进行讲解。水冷初学者应该能从中比较完整的了解到水冷知识,而商家们或许也能找到进货和促销的灵感,高手们欢迎对拙文进行斧正和补充!为了照顾初学者,“水冷基础知识篇”所占篇幅最大,尽量做到图文并茂,希望能增加阅读趣味。事实上,这些图片的收集整理工作占据了写作时间的一半以上。

同一件事情站在不同角度可能会得出不同的结论,我完全理解和认同这一点,并且非常希望能出现百家争鸣的局面。不过,本文是针对初学者的入门读物,为了尽量避免初学者对一些现象的判断失误,我在拙文中会针对许多现象给出我自己的结论供初学者参考。受限于我对水冷的肤浅认识和个人喜好,这些结论或有武断和误导的可能,所以请大家带着自己的判断来看待我所谓的结论,它们仅供参考!如果你因此而遭受任何形式的损失,请恕我概不负责。

为了能让更多的人认识水冷,只要注明原始出处链接和保留作者信息、感谢信息,拙文网络版可以随意在网上转贴(但希望每次转贴至少要以完整的一个篇章为单位,防止断章取义),同时拙文也会根据读者反馈进行修正,不排除日后推出新版的可能。

请注意:在未获作者本人授权的情况下,拙文不得用于印刷和销售。如果有朋友发现拙文被印刷或者销售,请用电邮wztemp2@gmail.com联络我,谢谢!


感谢这些热情帮助拙文写作的朋友们!


特别感谢《微型计算机》DIY频道编辑刘宗宇先生,是你给予的宝贵机会,促使我决心把这篇文章写出来。

特别感谢著名水冷玩家Kone(广州)、Pawel(波兰)、CWPP(香港)、亨利水冷(长春)和酷威水冷(深圳)为本文提供宝贵经验和建议,以及你们所分享的精彩作品 / 产品照片,并没有你们拙文将大为失色!

我邀请Kone(广州)、Pawel(波兰)、CWPP(香港)、亨利水冷(长春)和酷威水冷(深圳)等热心帮助本文写作的朋友对本文读者们说几句话,但只有Pawel(波兰)和CWPP(香港)随意说了几句,其他人虽然给予我热情帮助,但似乎更愿意保持低调,我在此尊重他们各自的选择。

来自波兰的Pawel想要对大家说:

"Liquid cooling enthusiasts can be divided into two groups. Are those  for which the most important is the performance of the system and do not care too much how it looks. This group is probably larger, in the end, after the idea is to make it cool. There is also a second group - much less, or at least I think so. It includes those for which the liquid cooling  is primarily a hobby. For them it's very important is something else.Performance is obviously important, but it comes to the appearance of the system and how it will be unique. For them, the fun from upgrading, changing and improving the cooling system never ends. You can always add something, improve something, to do otherwise. I'm just one of them...and I want to share with you their passion..."    ——Pawel

译文:“水冷玩家大致可以分为两类:第一类更注重性能而不太在乎外观,这一类可能人数较多,他们的终极目标就是追求更凉快。第二类要少得多,至少我是这样认为,这类人玩水冷已经成了嗜好。对他们来说,水冷系统的效能固然重要,但系统的外观和独一无二也同样不可或缺。对第二类玩家来说,乐趣来自于水冷系统可以永不停止的升级、更换和改善,你总是可以增加点什么或者改善点什么。我就是第二类玩家中的一员,我希望能与你们分享这种激情...”——Pawel(波兰)

作者注:Pawel和我的英文都不太好,Pawel的在学校学的是俄语,我在学校学的英文大部分都还给老师了,所以,以上的原文和译文,大家能大概看明白就行,呵呵。





配图0001 / 0002: Pawel的MOD作品Lilianna ,基于联力V2010机箱。更多精美图片请见Pawel的Pisca相册。对Lilianna感兴趣的朋友,请查看包含整个制作过程的Worklog:http://forum./t473139.html 波兰语,长达187页!我虽然看不懂波兰语,但在逐页翻阅后,依然感动于他前后7个版本的执着和巨细无遗的近千张过程图片。
来自香港的CWPP想要对大家说:

就照你的意思, 在作者資訊上加上注明, 及雜誌出版後, 給我發個電子版就行, 這對於我老婆因我花在水冷興趣的時間而曾經冷落她, 無疑是一種有力的交代, 哈哈.

當初, 小弟決定這樣投入玩水冷, 也許還有這樣的期望 ....., 就是希望本土水冷生產商, 能好好地把自己的產品認真設計好, 不要只把精神放在安排打手在網上, 假扮用家吹噓自己的產品及攻擊行內對手. 有些本土水冷生產商太貪心, 要賺得很盡, 他們往往認為產品設計得好一點, 成本就會增加很多. 然而, 我覺得這只是他們不願用腦子花心思的藉口, 又貪心只顧騙快錢, 而其實那一點點的改善絕對不是成本問題.

亞洲天氣較外國炎熱, 而玩水冷的亞洲人現時反而較少, 水冷興趣在亞洲的潛力無疑還有很大的空間擴展. 我覺得就現時來說, 厘定水冷的消费定位, 尤其低階層面, 還未能只靠單一產品的價錢去衡量, 而是應該從  '覆蓋規模' 方面決定. 因為現時一套效能好過風冷的水冷設備, 已經屬於很多人'眼中' 的 '中階水冷', 那麼, 要一套效能跟風冷差不多的 '低階水冷' 幹嗎~~!? 這起點, 多數外國生產商及玩家們已十分清晰明確. 在我眼中, 現時有些厂商出品的所謂 '高性價比的低階水冷' 產品 , 只不過是厂商們吹棒出來, 騙新手遷就自己產品質素水平的矛盾荒旦定位.

我認為玩水冷, 不論高、低階, 暫時還是用外國货好.

如果想省錢, 少預算的話, 還是應該只水冷單一熱源 (單水道, 一個水冷頭) 保持小規模.
——CWPP(香港)





配图0003 / 0004:CWPP的MOD作品之一,基于联力V2000机箱,其中CPU和内存、主板南北桥、MOS部分冷头为CWPP自行设计,而且还异常无私的共享了这些冷头的设计图纸!而著名的BitPower旋转弯头等产品,也是在CWPP的建议和帮助下设计并热销。 更多图片请见CWPP的Flickr相册中的:珍藏集PC Watercooling

水冷基础知识篇




电脑水冷和汽车引擎的水冷比较类似,都是利用液体吸收热量并再传给散热器,然后用风冷或者被动散热的方式散出热量。水冷系统散热能力强的秘诀,一在于水的吸热和导热性能比空气好很多,二因为水冷系统的总散热面积也要比风冷系统大很多。

水冷(Water Cooling)是液冷(Liquid Cooling)中的一种,水冷被引入个人电脑后,早期没有专用的导热液体只能用水,如今的水冷液主要成分也是水,所以大家仍习惯性的称之为水冷。


配图001:Swiftech的H20-220 Ultima XT套装,差不多是一套最简单的水冷,包括了冷排 / 风扇(左上)、水箱(中)、水泵(右上)、CPU冷头(右下)、水冷液(图中为浓缩小瓶装,需自己加蒸馏水稀释)、水管和管外弹簧等部件。

好端端的风冷不用,为什么要去玩水冷?这要从水冷系统的四大优势说起:

性能优势:在25℃环境中,空气的热传导系数只有0.024 W / mk,而水是0.58 W / mk,是空气的24倍多; 同样在25℃环境中,空气的比热容是1012 J/(kg·K),而水的比热容是4186 J/(kg·K),是空气的4倍多,也就是说要让空气上升4℃多的热量才能令相同质量的水温度上升1℃,所以,作为导热和吸热介质,水先天就要比空气优越。

凭借导热和吸热效率都很高的水作为冷却液,加上超大的散热面积,水冷相比风冷有先天的性能优势。特别是一些高发热量的顶尖显卡(比如GTX480),即使不超频,在夏天依靠风冷散热器已经很难让它们有理想的温度了,公版GTX480在室温25℃时满载温度往往高达90℃以上,而改为水冷可以让GTX480 SLI的满载温度仅有49℃和52℃,噪音更是低不可闻。


配图002:室温25.3℃下运行的两张并联水路的水冷GTX480 组SLI,默认频率时,满载温度仅49 / 52℃,水温为31.3℃,风扇1200转,水流量355LPH。冷排为一个Thermochill PA120.3、一个PA120.2、一个PA160。(图片由Kone提供)。

对超频玩家来说,水冷能够更有效的压制超频所带来的高热量,增加超频成功率和系统稳定性。水冷也比制冷片、压缩机、干冰、液氮等容易结露的极限制冷方式安全得多,适合长期稳定使用。


配图003:用1.408V电压超频至4.5GHz的6核12线程i7 980X,体制不算太好,室温25.3℃下水冷满载运行6个OR,41分钟后6个核心的温度分别是66、59、59、61、65、66,水温27.8℃,风扇1200转,水流量378LPH,冷排为两个Feser X-Changer 360,一个Thermochill PA.120.3,水路中还串联有一套EK的技嘉X58-UD7主板全覆盖冷头(为南北桥和两组主板供电部分散热)。本截图由Kone提供。


配图004:核心超频19.3%(835MHz)、显存超频至1000MHz、流处理器超频19.3%(1670MHz)的两张水冷GTX480 组SLI。并联水路,在室温25.3℃下满载运行,温度仅51 / 55℃,水温为32.5℃,风扇1200转,水流量355LPH。冷排为一个Thermochill PA120.3、一个PA120.2、一个PA160。本截图由Kone提供。

静音优势:依靠散热面积庞大的冷排或者被动散热金属水箱,水冷系统只需要很低的风扇转速就能获得足够的散热能力,几个低速风扇的低噪音不会是一个低速风扇的几倍,而只会略高于单个低速风扇,这对追求静音的用户很重要。在室温较低的时候,有些水冷系统甚至可以不用风扇。


配图005:曾经的无风扇王者思民RESERATOR 1 V2,如今的夏天就算加上原厂风扇也难以应付最新的高热部件了......

大多数情况下,水冷系统中会产生噪音的部件只有水泵和风扇,优质水泵只要搞好避震一般都可以控制在硬盘空转的噪音水平,仅用 600~1000转的风扇,大多数水冷系统即可散发各部件产生的热量,而风扇只要不高于1000转噪音大都基本可以忽略。当然,水冷也可以很暴力,配备暴力风扇的水冷系统效能将更加惊人。


个性化外观:水冷系统一直都是酷炫的象征,特别是中高端的水冷系统。水和怕水的板卡这一强烈对比,再加上本身质感出色的水冷零部件,只要花点心思,打造出独一无二的漂亮外观并不困难。由于每个人选用的机箱、板卡、冷头、走管方式、布局和装饰灯光都不同,除非刻意模仿,否则很难有两套水冷系统看起来是相似的。下面几张图是CWPP和Pawel这两位水冷高手的作品,他们都使用了联力的V系列黑色高塔机箱;都使用了红色系的水冷液;都使用了冷排下置思路;都使用了主板、CPU、显卡、内存全水冷......但是最终出来的效果有很大不同。





配图006 / 007: CWPP的MOD作品,基于联力V2000机箱。对这个MOD感兴趣的朋友可以到以下链接查看主要制作过程Worklog:
http://www./forums/showthread.php?t=251716 (英文)





配图008 / 009:Pawel的MOD作品Lilianna ,基于联力V2010机箱。对Lilianna感兴趣的朋友,请到以下链接查看包含整个制作过程的Worklog:http://forum./t473139.html (波兰语,长达187页!我虽然看不懂波兰语,但依然感动于他前后7个版本的执着和巨细无遗的近千张过程图片。如果你想要看英文版,请访问:http://www./forums/showthread.php?t=253432,英文版的7个版本演变对比更清晰,不过英文版的制作过程图片和设计思路说明远没有波兰语版完整。

许多水冷部件本身就是唯美风格,想象一下它们装点出的水冷系统能YY到什么程度吧!

配图010:CWPP自己设计制造的各种冷头。


配图011:Pawel在MOD中使用的部分冷头和接头。

安装灵活:风冷散热器的吸热/导热/散热部件通常都是不可拆卸的一体,虽然总体积较小,但容易受到主板布局和机箱空间的限制。而水冷系统的吸热部件(冷头)、导热部件(水管和水冷液)、散热部件(冷排)都是各自分离的,能通过柔软的水管互相连接灵活布局。安装在主板上的冷头体积比高塔式风冷散热器小很多,也极少与周边的其他部件产生冲突。水冷系统凭借体积分散的先天优势,有时能比风冷系统更合理的利用机内零碎空间,基本不受主板布局的限制,风道也更灵活。

比如:水冷可以把冷排等大件装在机身外,这样即使是很小的机箱,也能轻松安装发热巨大的高端配置。而且,机箱内冷头和水管所占的空间要比高塔式风冷散热器更小,改为水冷后机箱内部空间反而增加,还能兼顾静音。


配图012:我的二奶机,小机箱改外置水冷后腾出的内部空间多装了三块硬盘。外置水冷距操作位置较远,加上机箱阻隔,操作位置基本无可闻噪音。

受主板布局限制,发热量大的中高端显卡往往只能配备占用双槽的侧吹风冷散热器,风道很长,这不是一种高效的散热方式。特别是双卡甚至三卡交火/ SLI时,各卡之间容易互相挡风,散热形势将更加严峻。追求效能的第三方风冷散热器,几乎都要占用更多的空间和主板插槽,很可能把你有用的主板插槽也给挡掉。而显卡的全覆盖水冷散热器,大都可以轻松做到含显卡只占一槽,这样就能腾出更多的插槽给其他板卡使用。


配图013:二奶机上一张本来占双槽的8800GTS,换装XSPC全覆盖冷头和单槽挡板后整体只占单槽,为声卡腾出了主板上仅有的一根PCI插槽。


配图014:EVGA推出的预超频水冷版GTX480 Hydro Copper FTW,整张卡只占单槽。

当然,事物都其有两面性,水冷相比风冷也有先天弱点,正是这些弱点限制了水冷的普及和发展。虽然通过使用者技巧的提高和增加资金投入,这些弱点可以大大淡化;但是水冷比风冷门槛高,对用户技巧乃至观念有更严格要求也是不争的事实。为了与前文的水冷系统四大优势对应,我在此也归纳了水冷系统的四大劣势:

价格较高:风冷的每个部件都是独立的个体,你可以只买一个CPU风冷散热器也可以只买一个显卡散热器。但是对水冷来说不是这样,即使你只打算给CPU上水冷,也必须购买水泵和冷排这样的“公用基础设施”,否则就无法组成完整的水冷系统,这使得水冷的价格门槛比较高。

水冷在绝大多数情况下都不会是标配,而风冷在绝大多数情况下都是标配,除了散片CPU这样的特例,不管是买什么板卡一般都会附带风冷散热器。所以,使用水冷系统将比使用风冷系统花费更多,水冷总体来说是一种玩家的选择,并不适合那些高度追求性价比的用户。

漏水风险:对付机器人的绝招就是向它们身上泼水!这是我们从小看动画片学会的......如今机器人的防水情况已经好了很多,但泼水这招对于电脑板卡来说依然是必杀技,因为如今的民用电脑板卡几乎都没有防水能力,它们中的绝大部分甚至从设计阶段就没有考虑过这一点。

现在的水冷部件已经有了很大的进步,只要你做好试水工作,部件质量问题或者兼容问题所导致的漏水已经很罕见。但由于操作不当或者规划失误所导致的漏水事件还是时有发生,而且通常发生在初学者身上。漏水特别是导致烧毁硬件的漏水是对初学者最严重的打击,许多初学者就是在发生漏水后心有余悸的放弃了水冷。

漏水在水冷玩家中通常昵称为“尿床”,这个昵称既隐喻了漏水通常是初学者容易犯的错误(你还嫩);也是水冷玩家们的自嘲。毕竟水就流淌在距离板卡只有几毫米的地方,谁也不敢担保说漏水永远不会发生在自己身上。除非你用变压器绝缘油(吸热和传热能力比水差很多),而且所谓的防导电水冷液也是不能指望的(详情请参阅水冷液介绍章节)。

技巧要求:除非你购买已经密封好才出厂的套装水冷,或有朋友愿意担任你的贴身技术支持,否则你将必须面对水冷系统的安装和维护问题,必须懂得水冷系统的基本构成和部件基础知识,也必须掌握简单的故障分析手段,就和你想开车就必须懂得基本的汽车知识一样。大多数人都只是打算用电脑,而不是玩电脑,可水冷却是玩电脑的人中那一小撮喜欢折腾的人才会去做的事情。

水冷的部件比风冷分散,但水冷部件的总体积也比风冷大不少。风冷各自为战,每个散热器都相对完整;而水冷部件可能来自众多厂商,如何把这些部件合理组合并安装在电脑上需要一定的规划和动手能力。特别是那种整套水冷系统都安装在机箱中的全内置水冷,更是需要你有较强的动手能力。

想要玩好水冷,你必须是个细致耐心和有想象力的人,粗枝大叶的态度只会令你失望或者遭受重大损失。你也必须掌握一定的电脑技能,如果你连把散件组装成一台电脑都不会,那么你恐怕无法享受到水冷的乐趣;即使你已经是个熟练的DIYer,也不意味着你就能很快的掌握水冷。教材缺乏的情况在拙文诞生后或许会略有那么一丁点改善,但是长期的实践和丰富的想象力仍是玩好水冷所不可或缺的条件。总之,想要成为一名优秀的水手(水冷玩家的昵称),不但要努力吸收别人分享的宝贵经验和技巧,也要靠自己不断积极探索才能真正走向成熟。

观念差异:相对于常规的风冷,水冷既是一种比较极端的散热手段,也是一种追求完美的执着。在不少水冷系统中,水冷部分的成本都会与电脑中主要的板卡接近甚至持平。类似Kone这样的“水冷帝”,电脑中水冷以外的部件加起来可能还不够他水冷部件价值的十分之一。如果把花在水冷部件的钱投资到CPU、硬盘和板卡上,说不定还能获得更高的平均性能......但是,这样的方法太传统、太简单、太没挑战性,更重要的是不好玩。

为了追求好玩而不惜代价,这样的观念肯定不是每个人都能接受。能用这种观念去玩电脑的已经是少数,能用这种观念去玩水冷的就更少见......虽然我这个水平比较臭的所谓水冷玩家很希望有一天能够全民水冷,但理智也告诉我这恐怕不可能。我之所以花半个月时间写出拙文,只是希望凭我这三年来所折腾出的一点点鸡肋心得,让那些想玩水冷的朋友能读到一篇相对完善的入门教程,树立正确的观念,尽量少走弯路,更不要在迷茫中丧失对水冷的信心。

必须明白的两点:

在开始介绍水冷部件之前,首先我希望大家明确一点(高手请绕行):温差!!也就是温度差距,任何热量的传导都要依靠温差才能高效的进行,水冷也不例外。如果你的水冷系统中没有主动制冷设备(比如压缩机或者半导体制冷片),那么水冷和风冷一样不可能将温度压到室温以下,但是水冷能比风冷更接近于室温。

温差让CPU的热量可以传递给冷头,温差让冷头的热量可以传给水冷液,温差让水冷液的热量可以传给冷排或者被动散热水箱,温差也让冷排或者被动散热水箱的热量最终可以释放到空气中。温差越大,散热效率就越高,温差越小,散热的效率就越低。但是最终不管风冷还是水冷系统都会实现热平衡,也就是维持在一个固定的温差,这个温差的大小在大多数时候直接与部件的档次挂钩,能压住和能压好是两种完全不同的档次。

请注意:水温降低1℃和CPU降低1℃的意义完全不同,前者要比后者更有实际意义。实际使用中,假设你的水冷系统中没有主动制冷设备,一定是CPU温度 >> 水温 > 室温,至于这些部件之间的温差有多大,很大程度上就决定于冷排和冷头的档次,以及你自己设计的风道等细节。

以水冷系统来说,在正确装配的前提下,如果电脑持续满载半小时后,水温能与室温只差3℃的可算是极高水准,如果你的系统中这个温差低于3℃,那么不是你的水冷系统太强,就是你的电脑发热太弱。通常情况下,电脑持续满载半小时后,水温与室温相差8℃以内的水冷系统就算是及格。

所以,没有标注室温的所谓“温度测试”根本上是没有意义的,不管对水冷还是风冷来说都是如此。同样是超频后的CPU满载45℃,15℃的室温下可能只是稀松平常,在30℃的室温下则肯定是了不起的成绩。日后各位再看到那种没有室温的所谓“温度测试”,完全可以白眼一翻直接无视!还有那些用天气预报当实际室温,倚仗娇嫩肌肤测量室温的行为也是对读者的轻慢。

如果要较真的话,湿度也会影响散热,湿度越大散热越难,不过生活中湿度的影响相比温差来说就要小多了。

另外一个需要明确的则是老生常谈了:一分钱一分货!你不能指望一套最低端的水冷系统能够打赢高端的风冷系统,一个糟糕的冷头或者一个面积还比不上一条烟的冷排很大程度上会扼杀水冷系统的先天优势,这和你跑步比刘翔游泳快是一样的道理。

假如不算二手便宜货,而且搭配合理的话,我个人认为1000元是自己组装一套完整水冷的最低标准,不足1000块的水冷完全可能输给500块的风冷。但是1000块以上,以散热效果论就是水冷的天下。不要忘了,水冷系统的部件分散,只要你的空间和经济允许,水冷可以一直扩展下去并且保持美观,而风冷基本上没这个条件。

水冷部件常用材料介绍:

在介绍水冷基本部件之前,我们需要先熟悉水冷部件的常用材料。

铜:这是水冷部件中最常用的材料,除了导热性能好之外,在水冷部件中使用铜的另外一个原因是为了防锈,家用水龙头也大多使用铜,这是一样的道理。

水冷部件中常用的铜是黄铜和紫铜,只需防锈的地方一般使用比较便宜的黄铜(比如接头),而与吸热/导热有关的地方通常使用较贵的紫铜(比如冷排和冷头),因为紫铜的热传导系数是黄铜的三倍以上,比热容也要高些。但是,最大的猫腻也就存在于紫铜中,紫铜的纯度会很大程度的影响其吸热/导热效果,而紫铜的纯度又是非专业人士难以用五官感觉出来的,很多时候国外产品之所以比国产的性能优秀就是胜在材料上。

按照我国的行业标准,普通紫铜可以分为T1~T4级别(数字越大纯度越低),T1级别紫铜非常昂贵(感兴趣的朋友可以自己到阿里巴巴网站搜索价格),所以极少在冷排和冷头中大规模使用,一般用于制造冷排和冷头关键部分的紫铜是T2级别,但也有部分不良厂商使用T3级别,甚至有些小作坊使用T4级别的。

当然,不管紫铜还是黄铜其实都不是完全纯正的铜,真正可以称为纯铜的应该是无氧铜(总杂质比例小于0.05%),价格就更加没谱了......

铝:这是低端冷头和低端冷排常用的材料,因相比铜,铝的价格便宜而且加工简单。但在水冷系统中用铝制部件要注意:如果水路中同时有铜制和铝制部件,而铝制部件又没有经过特殊表面处理的话,长期使用后铝会因为水冷液的电离作用产生化学反应(特别是使用含有较多杂质的自来水时更加明显),进而在铝材接触水冷液的表面产生很难清理的杂质,这些杂质会削弱散热能力甚至造成水路堵塞。我的建议是:如果你不确定铝制部件是否做了表面处理,水路中最好不要铜铝混用,尤其是要小心低价的铝制冷排和铝制冷头。但只要是不和水冷液接触的部件,就大可放心的使用铝制品。

银:这是某些疯狂级冷头使用的材料,银有比铜更高的导热系数,可以进一步增强冷头的吸热和导热能力,不过水冷部件就算用银通常也是用925银,而且大多只是用在和CPU接触的底面上。当然,也有部分厂商特意推出YY的镀银接头以迎合狂热玩家的审美观。有些狂热玩家还会在水路中放入小片纯度达99.9%的银条(silver coil),据说有抗菌防腐的妙用,当然,有些玩家(如本帖254楼的darkness66201朋友)认为只要是银就可以起到类似的作用,不必非要99.9%纯度。


配图015:Aquacomputer cuplex XT di2银版冷头及其925银底面,是最昂贵的冷头之一

不锈钢:化学稳定性和强度都很好,但吸热和导热性能一般,在水冷中一般用于制作不影响热交换过程的接头,又或者用于冷头的上盖和装饰件等部分。

磁钢:通常用于水泵的转子部分,带有强磁性,水泵的磁钢都已经做过防锈处理。

压克力:ACRYLIC的中文音译,聚甲基丙烯酸甲酯(PMMA)材料,也称亚克力,有高透明度、优良耐候性和便于加工的优点,还可以用染色(包括UV色)工艺来提供多种颜色,表面可以喷漆、丝印或真空镀膜,因此在水冷中应用非常广泛。常见于水箱、冷头上盖、泵盖、连接件和装饰件。


配图016:使用LED打光的XSPC压克力DDC泵箱

压克力有一定的强度,通常用于受力不大的场合,但它的韧性一般,所以上接头或者螺丝时注意不要用力过猛,否则有破裂的风险。压克力容易切割,DIY起来很方便,但粘结要有专用粘结剂,而这些粘结剂通常含有毒成分和刺激性气味,家有小朋友的最好不要折腾这活。

亚克力也有不同的型号,不同型号的亚克力硬度/韧性/耐热等指标是不相同的,所以千万不要认为只要是亚克力就一样!一般来说,较软的亚克力适合用来制作体积较大的水箱,但不适合制作要与密封圈紧密压合的上盖,否则一段时间后这些较软的亚克力就会被密封圈压出凹陷导致漏水.......而使用较硬的亚克力制作冷头上盖时也要注意避免应力集中和考虑到热胀冷缩的因素,否则时间长了容易开裂,亚克力选材不当或者设计失误是很多廉价亚克力上盖冷头出问题的原因之一。

POM:英文polyoxymethylene的简称,中文名是聚甲醛(又名聚氧化次甲基),也有称作Acetal 及 Delrin 的类似材料。POM有金属塑料 / 塑钢之称,强度和韧性均比较好,所以基本不会有压克力那种被暴力拧裂的风险。水冷部件中POM与压克力可以互换,不过POM一般只有黑白两色而且不太透光(白色POM可以稍微透朦胧的光),所以有些人认为POM的美观程度不如压克力。


配图017:EK的Supreme LT冷头,压克力上盖(左)和POM上盖(右)版本,性能一样,仅外观风格不同,亚克力上盖(左)版本还带有LED灯孔。


配图017A:AquaComputer的小水箱(白色POM版),借助白色POM可以稍微透光的特性,可以营造出朦胧的整体发光效果,是许多水手喜欢的梦幻水箱。

水冷基本部件介绍:

下图反应了水冷系统封闭循环的特点,绝大多数水冷系统都至少具备这些基本部件,让我们逐一介绍:

配图018

水泵(Pump):在水冷系统中,水泵唯一的作用就是推动水冷液快速循环流动。水冷系统大多是闭路循环的,用于水冷系统的水泵,则大多是类似于无刷电机的磁力泵设计(对磁力泵工作原理有兴趣的朋友可以自行上网搜索解惑)。下图为水冷中应用广泛的DDC水泵的分解图,其他常用的水泵结构也大体类似。

配图019

按照与水冷液的接触方式,水泵可以分为旱泵和潜水泵。旱泵通常仅有接触水的泵腔部分有防水密封,控制电路等部件没有防水措施,因此如果水冷液外漏渗入控制电路板,将可能导致旱泵烧毁!水泵被水烧毁并不是一个笑话,而是很多人亲身经历过的悲剧。潜水泵则有全身防水密封措施,控制电路虽然在水下但不会进水,不过如果密封失效导致水浸电路板也同样可能烧毁。潜水泵因为整个浸泡在水冷液中,能有效减少可闻噪音,但通常潜水泵都和水箱做在一起,体积比较大,而且潜水泵的第三方改装配件也很少,玩法相对单一,相比之下旱泵会显得更灵活些。水冷中旱泵和潜水泵都有使用,但总体来说是旱泵居多,特别是中高端的水冷系统几乎全是旱泵。

配图020:XSPC的X2O 750双光驱位潜水泵箱

只要水冷系统中的水冷液还能循环流动,就能够起到散热的作用。不过水冷液流速的高低,对散热效果有一定的影响,其影响幅度一般仅次于冷排散热能力和冷头吸热能力排在第三。因此,判断水泵的好坏通常看其驱动下的流速和噪音的表现。

水泵性能的主要指标是是扬程和最大流量。水泵的最大流量这点大家应该都理解,不过请注意这是水阻为零时的“最大空载流量”,在实际的水冷系统中,因为有冷头、冷排、接头、水管和水管等部件带来的水阻,实际能够实现的流量一定远远小于水泵标称的最大流量。水冷常用的流量单位是LPH(每小时多少升),LPM(每分钟多少升),GPM(每分钟多少加仑)以及GPH(每小时多少加仑),其中GPM是美制单位,在进口产品的指标中很常见,你可以按照1GPM=3.75LPM=225LPH,或者1GPH=0.0625LPM=3.75LPH来简单换算。我个人认为,泵在水冷系统中最起码要能达到1GPM的实际流量。

那么扬程和水冷系统的流量有什么关系?扬程代表了水泵克服水阻维持流量的能力。扬程高的泵会有更好的抗水阻能力,若两个泵的标称流量相等但扬程不等,那么通常是扬程大的那个在实际使用中流量更大些。常见的扬程单位有高度和压力两类,高度类的一般是米和英尺(ft)两种,可按照1英尺(ft)=0.3048米来换算;而压力类一般是KPa(千帕)、MPa(兆帕)、mH2O(米水柱)、mmHg(毫米汞柱,水冷用泵因为压力较小,一般不会用米汞柱这样大的单位)和PSI、Bar等,有关压力类单位的换算可以参考这个网址

每种水泵都是扬程越大(可简单的理解为水阻大)时流量越小,扬程越小(可简单的理解为水阻小)时流量越大。每种水泵都有一条扬程和流量的对应曲线(又称水阻线),下图就是DDC泵的水阻线,包括了3.1版和3.2版的DDC。实线为扬程和流量的关系,对应流量横坐标和左侧的扬程纵坐标;虚线为电功率与流量的关系,对应下方流量横坐标和右侧的功率纵坐标,这个曲线图大家应该都能看明白。学会看水阻线是每个水手的必修功课,除了水泵之外,有些国外品牌的冷头、冷排和水冷接头等部件也会提供水阻线,通过水阻线图表,我们不需要进行实测就可以快速的判断一个泵的能力,或者看出一个水冷部件的水阻表现。


配图021:DDC 3.1和3.2的水阻线和功率线

很多用户都关心水泵的噪音问题,不过水泵厂商大都不提供噪音数据。一来水阻和水冷液粘度变化时泵的噪音会不同;二来噪音的分贝数并不代表实际的听感,人耳对低频噪音不敏感,对中频和中高频的噪音很敏感,因此就算有分贝数据其实也未必有用。水泵的噪音会取决于你的水路水阻、水冷液粘度、供电电压等因素,当然也和你的避震措施有关,再加上每个人的听觉习惯差异和避震隔音水平的高低,对水泵噪音的判断其实包含了相当的主观因素在内。

我整理了一个几种常见水泵的对比表,大部分数据取自生产厂商公布的规格,静音项则凭我个人经验主观判断,分数越高越安静,分数为5的可视为等于硬盘空转噪音,价格为酷威水冷和亨利水冷提供,仅供参考。


注1:大多数定速版D5转速相当于调速版的第四档,约4050RPM,但近期似乎也有相当于调速版第五档(约4800RPM)的定速版型号出现。
注2:调速版D5在四档(4050RPM)或更低时,静音项可得4分,调速至最快的五档(约4800RPM)则降为3分。


以上的指标都是原装水泵的指标,实际上,许多水冷玩家会把原装水泵上盖升级为改装上盖,以获得更大的流量,不过,这种改装通常仅限于DDC和D5泵。还有把两个甚至多个水泵进行串并联的玩法,这些方面的技巧我将在接下来的“进阶与规划篇”中介绍。

除了上面介绍的这些水泵,也有些人会用化工泵或者水族箱泵(也称鱼泵),不少化工泵(比如IWAKI的)会有比D5还强的性能,而水族箱泵则比较便宜。不过你需要考虑到这些冷门泵的供电以及接口等问题。它们通常不是用直流12V供电,而是24V、36V或者交流220V,它们的接口通常既不是水冷标准管径,也不是用水冷接头标准的G 1 / 4螺纹,而且这些泵的体积一般都比较大。当然,这些问题只要你愿意动脑筋、花点小钱和时间通常总能解决,不过对于初学者我还是建议直接使用我在上表中所介绍的型号。




配图022 / 023:图中体积较小的是安装了EK改装上盖的D5泵,体积较大的是IWAKI生产的化工用磁力泵RD-30,工作电压22~26V,24V时功耗76.8W,最大流量1200LPH(5.3GPM),最大扬程10米(此处之前参数错标为RD-20的,现已修正为RD-30参数,感谢kevin_ssk朋友指正)。是水手们心目中真正的“泵王”。图片中的IWAKI RD-30为Kone的私人珍藏。

国内一直有种论调认为Laing D5是“泵王”,确实,D5是空载流量之王,但从上表可以看到,D5的扬程并不高,也就是说D5克服水阻的能力不算强。在冷头较多或者水阻较大的单泵串联水路中,我还是推荐使用DDC泵,许多时候反而能获得比D5更好的效果。单个D5泵在这种水阻大的串联水路中流量其实并不出色,而且许多人还为了静音把它放在转速较低的三档(空载时约3300转),这就进一步削弱了它的扬程,导致流量偏低进而影响水冷系统的散热效果。下图是D5的水阻线,大家可以看看它在三档(P3)时的表现其实已经并不出色了,所以不要迷信所谓的“泵王”称呼,根据自己的实际情况来选择水泵才是最明智的。

配图024:D5水阻线,Danger Den官方网站资料。

看个新鲜:下图是Laing推出的一种改良型DDC泵,采用了类似改装上盖的顶部垂直入水方式,流量要胜过普通的侧面入水版DDC。它的顶部入水接口增大为1 / 2英寸的宝塔,但是出水口依然是3 / 8英寸宝塔,这种同一个泵出入水口都不一样的设计实在有点搞笑。虽然高度大了一些,但是性能的表现以原装DDC来说令人惊喜。可惜这样的DDC泵在零售市场上很少见,印象中只见过Danger Den代理销售。


配图025

散热装置(Heat Exchanger):散热装置功能当然就是散热。它是水冷系统效能的关键所在,往往也是整套水冷成本中的大头。

常见的水冷系统的散热装置一般有三种,分别是冷排(Radiator,也称散热排/水冷排)、被动散热水箱(Passive  Reservoir)、以及使用半导体制冷片的主动制冷装置(T.E.C. Cooling)。本文定位于入门基础知识,所以主要讨论冷排,其他两种大家知道就好。


配图026:冷排是最常用的水冷散热装置.,选择众多,丰俭由人。

配图027: AlphaCool的被动散热铝管,利用庞大的散热面积来散热,通常需要多个串并联使用。

配图028: Coolit的Boreas半导体制冷系统,用12块制冷片分四组吸收水冷液热量,然后用巨大的风冷散热器为制冷片散热,自身最高耗电154W。

冷排其实就是一个巨大的散热片,在下图这个透明冷排中,吸收了电脑部件热量的水冷液流入冷排左上方的水室,通过六条扁铜管流到冷排的另一头,然后再通过连通室走另外六条扁铜管回到冷排右下方的水室,最后流出冷排。冷排一般没有方向性,在实际使用中如果不是有特殊需求的话,进出水方向可以随意选择。


配图029 / 030

在水冷液呈U字型路线在冷排里流动的同时,水冷液的热量会传导给十二条扁铜管,扁铜管再把热量传递给焊接在扁铜管之间的波浪型散热鳍片,最后由风扇把散热鳍片上的热量吹到空气中。在这个热交换过程中,水冷液中的热能减少温度降低,散热的目的就实现了。




配图031 / 032 / 032A: 扁铜管和波浪型散热鳍片的特写。铜管做成扁长形状是为了增加截面面积减少水阻,同时还可以在扁铜管之间安装波浪型散热鳍片增加散热面积。

我在上文用于示范的透明冷排是结构最简单的一款,它只能装一个12cm风扇(所以也被叫做120冷排),它的扁铜管只有一层12根(也称为单层水道),散热能力有限,在水冷系统中通常我们需要性能更强的冷排。

冷排的散热面积直接关系到散热能力,要获得更大的散热面积,可以选择把冷排做得更大或者更厚,也可以选择在波浪型散热鳍片上下功夫。

按照可装风扇的直径,常见的冷排有80系列(8cm风扇)、90系列(9cm风扇)、120系列(12cm风扇)、140系列(14cm风扇),其中120系列在电脑水冷中应用最广泛,因为12cm风扇拥有量和选择余地最大,而且很多时候可以利用机箱上的12cm风扇孔安装。


配图033:安装了12cm风扇的120冷排。

能装14cm风扇的140冷排是最近几年兴起的,因为140冷排不但散热面积更大,而且14cm风扇也能够在同样的转速下提供更大的风量和风压,在静音的前提下容易获得比120冷排更好的性能。因为14cm风扇的选择不是很多,所以部分140冷排也同时提供能安装12cm风扇的孔位,以方便用户选择风扇或者利用机箱上的12cm风扇位进行固定。


配图034:Aquacomputer的airplex revolution 420/360 G1/4冷排,它的一面可以安装14cm风扇,另一面可以安装12cm风扇,而且两面都开有出入水口,走管时的灵活性很高。

不太常见的还有能安装18cm、20cm、22cm、24cm风扇的冷排。使用大直径风扇的好处是能用很低的转速获得足够的风量,且噪音极低;坏处是这些风扇选择很少,而且这种冷排往往难以直接装入机箱中。

配图035: 安装20cm风扇的Phobya Xtreme 200冷排,该冷排同时支持18、20、21、22、22.5cm规格的风扇。

按照单面可安装风扇的数量,常见的冷排从装一个12cm风扇的120规格到装4个12cm风扇的480规格不等,其中装3个风扇的360规格冷排因为体积和效能比较平衡使用最广。

配图036: XSPC的RX系列冷排,从左至右分别为120、240、360、480规格。

当然,有小的就有大的,也很有夸张的9风扇1080冷排,这种巨型冷排就算给汽车散热估计都够了,因为体积过大,这些冷排通常都只能安装在机箱外面。

配图037: 从左至右分别是 Aqua Computer evo 1080、Watercool Mo-Ra 2 Pro、 Phobya Xtreme NOVA 1080,国内能买到的Magicool 3x 360 Xtreme在外形上和Phobya Xtreme NOVA 1080看起来一样,说不定是同一家OEM。

按厚度分类,常见的冷排有单层水道的25mm、35mm、 双层水道的45mm、50mm、55mm、60mm等,甚至还有厚度达到104.2mm的怪兽级产品。其中40mm及以下厚度的一般称为薄排,40mm以上厚度的称为厚排,厚排的散热能力通常比薄排更佳。不过,冷排其实是一种风冷散热器件,越厚的冷排就通常越难被风扇吹透,也就是说可能需要更高的风扇转速才能发挥理想的效能。

配图038: 厚度达到104.2mm的怪兽级产品TFC Monsta XChanger 360/420,每面可安装3个12或14cm风扇。

在散热鳍片上下功夫以增加散热面积也是一种思路,一般冷排在两根扁铜管之间只布置一层波浪型散热鳍片,增大鳍片的密度或者装设双层鳍片都可以直接增大散热面积。但是,通常越密的鳍片越难被风扇吹透,也就是说可能需要更高的风扇转速才能发挥理想的效能。

配图039: 上图展示了不同冷排在五根扁铜管之间的鳍片情况,大家可以自行比较不同的设计

想要达到最佳的散热效果,冷排需要有一定的空气流量穿过散热鳍片。冷排的鳍片密度单位是FPI(Fin Per Inch,每英寸多少片鳍片),通常8~13FPI的冷排被称为低FPI冷排,比如著名的排王(Thermochill )PA120系列(10.2FPI)、比较超值的XSPC RX系列(8FPI)等,这类冷排通常只需要较低风扇转速就能发挥出理想的效能,适合希望在静音和效能之间取得平衡的用户。FPI在13~20的则称为中FPI冷排,这类冷排相对少见,比如入门佳选Swiftech的MCR系列(14.6FPI),而且通常都是单层水道的薄排。大于20FPI的往往称为高FPI冷排,它们往往需要较大的气流量才能发挥出满意的效能,因此在使用低速风扇时往往表现不佳,比如HWLabs的BlackIce GTX系列(双层鳍片,每层20FPI)和Thermochill 的HE120系列等,这类冷排适合那种不太注重风扇噪音但想要追求极限性能的用户。


配图039A: FPI的测量示意图,数一下每英寸长度内鳍片的数字就可以,如果不是整数的话,就需要数到整数,然后以英寸为单位去除了,所以厂商标称的FPI数字并不一定都是整数的。

当然,FPI只是反映了鳍片的密度,影响气流通过冷排阻力的因素除了FPI之外,还有冷排的厚度等其他因素,比如说Swiftech的MCR系列(14.6FPI)虽然FPI值稍高,但因为它是单层水道的薄排(厚度34mm),实际使用中在800~1000rpm的低风扇转速下也有很不错的表现,反而是TFC X-Changer 系列(12FPI,62mm厚排)在同样的800~1000rpm风扇转速下性能还不如MCR系列。

如果你为低风压冷排配上暴力风扇,也能进一步提升它的性能,只是提升幅度不会好像高风压冷排那样明显。而高风压冷排如果没有足够的风量,其效能将低得令人发指。

如果气流量不足以达到冷排的设计需求,那么即使是散热面积庞大的厚排也将会表现得很糟糕,波兰水冷玩家Pawel曾经比较了厚度达62mm的TFC X-changer 480和厚度仅34mm的Swiftech MCR420-QP,当风扇转速在1000转以下时,薄得多的MCR420-QP性能反而超过X-changer 480不少,只有当风扇转速超过1000转时,X-changer 480才能领先,而且风扇转速超过1000转越多,X-changer 480领先的幅度就越大。所以,一个冷排的性能高低,很大程度上要看它所配合的风扇而定,并不是大块头就一定稳赢。

配图040: 厚的那个是TFC X-changer 480,薄的那个是Swiftech MCR420QP,两者都是480规格冷排,但厚度相差接近一倍,价格也差一倍。

如果你确实很在意风扇的噪音,而你所用的冷排在低风扇转速下性能不咋地,或许你也可以考虑用下图这种方式来安装风扇。一吹一吸的风道能用较低的转速来获得更大的风量,这有助于减少噪音。不过,这样的方式会令你的冷排变得更厚,现在你可能要为寻找合适的安装位置而头痛了......

配图041

冷排所用紫铜材料的纯净程度(也就是普通紫铜等级T1~T4)、鳍片的设计和焊接工艺、内部水道的设计和规划,甚至是表面的防锈漆的选择和喷涂厚度等细节,都会影响到冷排的最终散热效果。大多数电脑水冷用冷排其实和汽车冷排或者空调用冷凝器是一样的结构,这种主体结构已经多年没有变更过(当然也有柯瑞沃这样比较创新的结构),各个厂商的产品优劣区别往往就表现在冷排的尺寸规格和做工这些细节上。

我曾经暴力解剖过一个国产冷排,发现这款号称全紫铜的冷排扁铜管和水室部分其实是黄铜,仅有散热鳍片看起来像是紫铜,而扁铜管与散热鳍片之间,以及扁铜管和水室之间的焊接似乎是用锡来做的(我用60W电烙铁可以融化这些看似锡的焊点),熟悉散热器的朋友都应该明白在这里用锡焊连接意味着什么。事实上,绝大多数的电脑水冷用冷排(包括国外品牌的冷排,比如XSPC)也和这个国产冷排一样使用黄铜水室,并且用锡焊来连接铜管和散热鳍片,大部分冷排的扁铜管也是黄铜,只有少数高端品牌的扁铜管是紫铜,真正的全紫铜设计(包括水室)仅见于柯瑞沃等少数冷排。

当然,想整个冷排彻彻底底没有锡也是基本不可能的,因为冷排用薄金属制造的水室不太可能使用大面积铜焊,首先铜焊条的熔点就和一般的紫铜差不多(或略低于一般紫铜),比一般的黄铜要高,所以黄铜水室如果使用铜焊,往往焊条还没熔水室先化掉了.....而紫铜水室使用铜焊的话废品率也很高,因为铜焊条的流动性比较差无法流焊只能点焊,要围绕水室点焊一圈是很麻烦的事情,而且点焊时稍微不注意,温度高点水室就会和焊条一起融化掉,所以除非是小面积低密度的焊接(比如把接头焊在水室上),不然都难以在薄铜板上实现铜焊,当然加厚紫铜板的话也是可以铜焊的,只是在铜价飞涨的今天,那成本嘛......所以类似水室和排体结合这样的大面积大长度焊接一般都只能用锡焊,区别也就是锡的纯度而已。


配图041A:Koolance当年为了宣传自己的铝排而发布的冷排解剖图,从这张图中可以看出大多数铜排使用黄铜(Brass)制作扁铜管,只有鳍片才是紫铜(Copper),而且在铜管和鳍片之间采用第三种非铜材料进行焊接(Bond),这里所指的第三种非铜材料通常是焊锡,热量在不同金属之间传导时效率会有损失,特别是锡的导热性能其实远逊于铜,所以这些锡焊点会带来较大的散热效能损失;而Koolance宣称自己的铝排整体包括焊接都是全铝(事实上铝和铝之间的焊接也无法用锡焊),完全没有锡焊说带来的热损失,这在后来也成为铝排比铜排效能更佳的理论基础之一。虽然后来在XS论坛的联合抵制下Koolance已经宣布放弃铝质水冷部件全面改为铜质和不锈钢质,但这张示意图依然可以用于解释传统工艺制造的铜排的先天不足。

冷排的散热能力直接决定了整套水冷系统的效能,同时冷排也是水冷系统中更新最慢、最耐用、最保值的核心部件。通常情况下,在水冷系统的规划和成本预算中应把冷排放在最重要的位置。另外,冷排还可以用并联或者串联的方法来增加总体散热能力,所以不想购买高端冷排也不要紧,只要你有足够的空间来安装,大可以用几个廉价冷排来达到甚至超过单个高端冷排的效能。

配图042: Swiftech 的MCR320-QP-Stack,采用两个360薄排并联而成。两个冷排中间夹着风扇,这种结构被称为“汉堡式”,汉堡式的优点是体积最紧凑。但因为风道问题,后面的冷排将不可避免的吸入前面冷排所吹出的热风,故散热效能会受到较大损失,效能将比不上两个冷排风道互不干扰的独立安装方式。另外,因为汉堡式结构中,两个冷排间距很小,如果冷排没有专门设计,想把水路连接好也不是件容易的事情。

冷排安装的难点主要是尺寸、固定和风道问题,比如说同样是360冷排,每个厂商的产品长宽高可能都不一样,而且还要顾及风扇厚度以及预留水管 / 接头位置、考虑尽量让冷排吸入冷风的风道等,所以一定要算好尺寸再选购。特别是打算把冷排内置在机箱内的朋友更要注意这一点,差一毫米都会很麻烦。冷排厂商大都会在其网站上公布冷排的详细尺寸图,比如下图就是Swiftech 的MCR120QP的尺寸:

配图043: 遇到国外产品只标注英制尺寸时,以1英寸=25.4mm换算。

注意:在把风扇安装到冷排上时,请根据你的风扇厚度选择螺丝长度,太长的螺丝会顶到冷排的散热鳍片和扁铜管。轻则造成散热鳍片脱焊影响散热效果,重则顶穿扁铜管造成漏水!这是初学者最容易犯的错误之一,请务必小心的选择螺丝长度以免遭受重大损失!

看个新鲜:下图是Magicool的40x80冷排......是的!你没看错,它每面只能安装两个4cm风扇。尺寸只有157 x 40 x 25mm,全铜制作,重量170克,接口不可更换,使用外径10mm内径8mm的管子。麻雀虽小五脏俱全,冷排该有的东西它一个都不少,不知道这么个小东西能不能压住一个北桥?呵呵!

配图044

再看个新鲜:非工科出身的朋友可能会很好奇冷排是怎么做出来的,下面我引用著名冷排生产厂商Thermochill在官方网站上公布的英国工厂制造花絮照片来说明一下。Thermochill于2002年创立,其PA120系列冷排多次获得“排王”美誉,目前主要的产品就是冷排和水冷液。当然,Thermochill不会傻到公开自己真正的商业秘密,以下照片只是冷排后期的组装和测试过程。有兴趣对Thermochill了解更多的朋友可以看看这篇Overclock3D对Thermochill的访谈(英文),从中你可以了解到一些有趣的八卦,比如说XSPC收购Thermochill后两者的关系、Thermochill为什么放弃冷排联通室的排气阀、为什么从24.5mm风扇孔距改为15mm、为什么Thermochill的冷排总是看起来喷漆不匀等等。另外,Thermochill的旧版网站还有更多的冷排制造过程照片,不过场景比较散乱就是。

配图045: 水室与冷排主体,图中大家可以看到这个冷排是双层水道的,注意水室中间那个分隔两个水室的带密封分隔片。另外请注意扁铜管与水室一侧的结合面是银色的,这里不知道是不是使用了锡焊工艺来连接扁铜管和水室托盘。

配图046: 把水室和冷排主体焊接起来。

配图047:这么快就焊好了?注意看,冷排主体与水室的颜色不同,因为冷排主体的散热鳍片是紫铜(扁铜管在这张照片中表面呈银色,不知道是因为光照原因还是表面镀了其他金属,总之是看不出材质),而两头的水室是黄铜。这是因为两头的水室对散热影响极小,所以没必要全用紫铜。大多数冷排厂商在水室部分用黄铜而不用紫铜的另外一个原因是:紫铜材质比较软,在加工中难以实现黄铜那么高的平整度,而不平整的表面再喷漆的话会更显得凹凸不平影响外观;另外比较软的紫铜在使用中受大力时也容易变形,使用加厚紫铜来换取水室部分的强度又会提高成本......所以大多数厂家都选择在水室部分使用黄铜。总之,下次再看见商家说全紫铜就可以偷笑了,不要说全紫铜,其实大部分都不是紫铜......

配图048: 用冲床和模具做出冷排上的风扇固定支架

配图049: 把冲好孔的风扇固定支架弯折成冷排所需要的 [  ] 形。

配图050: 把风扇固定支架焊接到冷排上(有些品牌的冷排会使用铆钉固定支架)。

配图051: 这位大哥,端午节已经过了,现在不兴投江了.....咦?冷排上还连着根管子,难道冷排要玩蹦极?

配图052: 喂喂喂!这位大哥,你把冷排扔进水里干啥?水冷不是这么玩地!

配图053: 原来人家是在进行密封测试,冷排一头通压缩空气另一头堵住,然后把冷排浸猪笼,只要冷排憋不住冒个泡,就得回炉重造

配图054: 如果冷排通过了测试,接下来就是拿去喷漆,以防铜表面氧化,外观看起来也比较YY。

配图055: 然后就可以打包出货了,这位大婶天天身处金山银山之中,真是幸福啊!我说大婶啊,不知道你有没有兴趣从事下工包行业.......



水冷头(Water Block):通常简称为冷头,又称吸热头 / 吸热盒,其作用是将部件的热量传递给水冷液,对整个水冷系统的效能影响仅次于冷排排在第二。冷头本身传热效率的高低,在很大程度上直接决定了冷头的档次。当然,冷头传热效率的高低与冷头本身的材质、设计、安装等因素有关,也与水流量有一定关系。

冷头的基本工作方式:使用吸热和导热性能良好的铜、铝、银等金属制作底面,让底面直接接触发热部件表面吸收热量,然后再把热量传递给水冷液。


配图056

只要是发热较大而且有条件安装冷头的地方,都可以使用水冷,在下图中,水冷高手CWPP为他的系统安装了CPU、内存、主板供电、南北桥和显卡水冷头,这几乎是一台电脑中所有发热较大的部件了。


]
配图057

当然,类似硬盘和阵列卡这样的发热部件,也有厂商或者个人制作了冷头,只是使用的人比较少。



配图058: AquaComputer的aquadrive X4 ,三光驱位四硬盘冷头,自带一个浮球流量计。



配图059: CWPP自制的LSI SAS 8888-ELP阵列卡冷头

电源冷头?要知道电源内部空间狭小,而且还必须保证外形尺寸的标准,所以电源应该没有冷头,至少我从来没听说过。就我所知,目前唯一的水冷电源出自Koolance,它在一个密封壳体内把主要的电源电路都浸泡在绝缘油中,并有独立的泵推动绝缘油循环流动,然后再通过一个板式热交换器来把绝缘油吸收的热量释放到水冷系统中。这款电源的额定功率被刻意的加大到1700W(220V时)或1000W(经济版本),绝大多数电脑都不太可能用到这么高的功率,这样它工作时总是远低于最高设计负荷,热量就可以大大减少,从而变相的降低了设计难度和对散热系统的压力。



配图060: 售价499美金起的Koolance水冷电源,只有极度狂热的水冷玩家才可能考虑它。

按照内部水道的设计特色,我们可以大概的把冷头分为平板式、粗水道式、微水道式和喷射式四类:

平板式是最古老的设计,其底面是完全平整的,水从底面流过并吸收底面传来的热量。平板式冷头加工最简单、水阻最小,但是它和水冷液的接触面积也最小,也难以形成乱流,所以效能相当低下,早已不能满足如今CPU冷头的需要。平板式设计现在已经趋于淘汰,只有少数较低热量部件的冷头,比如南北桥、主板供电部分、内存、硬盘冷头还偶尔使用这种设计。



配图061:平板式设计的Swiftech MCW30北桥冷头

粗水道其实就是在平板式的基础上增加了一些凸起或者柱形,以增加冷头与水的接触面积,提升局部流速并带来一定的乱流,从而加强散热能力。粗水道设计的水阻不大,对水泵要求也较低,这有利于降低水冷系统的成本。粗水道设计广泛应用于南北桥、主板供电部分和全覆盖冷头。一些低端CPU冷头也还在使用粗水道设计,不过单纯的粗水道设计已经日渐被CPU冷头所抛弃,逐渐沦为北桥冷头的标准。



配图062: EK的5870显卡全覆盖冷头,只在核心的位置做了简单的波浪型水道。

随着粗水道冷头逐渐不能满足愈发热情的硬件,厂商开始把水道做得越来越细小,以增加接触面积和乱流,最终诞生了微水道冷头。微水道式的冷头会在底面上做出很多异常精细的狭长水道或四方小铜柱,使底面与水冷液接触的面积增加到最大,这些特制的水道会迫使水冷液高速通过密集的水道并产生较大的乱流,从而使水冷液能更高效的吸收底面传来的热量。不过,微水道设计的水阻会偏大,对水泵有一定的要求,还需要水冷液保持高度的清洁,不然很容易被堵塞。它被广泛应用在CPU冷头特别是中档的CPU冷头中。



配图064: EK Supreme LT冷头的底面,有间隙令人发指的微水道。



配图065: AquaComputer(左)和Koolance(右)的GTX480全覆盖冷头,面对GTX480的超高热量,它们都被迫采用了效率更高的微水道设计。

微水道其实是从粗水道发展而来的,从水阻角度说,圆柱型铜柱的水阻应该最小......不过,如果铜柱的直径小到一定程度而且分布非常密集的话,要在保证良品率的前提下的高效的加工出来就相当困难(或者说成本太高)。为了降低加工难度和成本,很多时候厂商会把铜柱加工成四方形,再后来就开始流行加工难度更低加工效率也更高的直线式微水道。



配图063 /:左为XSPC上一代的Delta V3冷头底面,Delta V3是775年代最具性价比的冷头之一,由众多微小的四方形铜柱组成微水道,而且铜柱高度不低,如今已经很少有厂商愿意在加工上花这种力气了。右为XSPC现役的RASA冷头底面,加工难度显然降低了不少.....当然,这只是说加工难度,实际上RASA已经是喷射式冷头设计了,其实际效能要好于Delta V3。

喷射式的工作原理是:将水通过狭小的喷嘴快速喷射到不平整的底面上,提升局部流速并且形成很强的乱流,从而使水冷液的吸热效率大为提高。传统的喷射式冷头一般都是三层结构(用于安装接头的上盖层 / 喷嘴导流层 / 底面层),这使得它的工艺比较复杂,成本也较高。传统喷射式冷头的水阻也很大,这使它对水泵的要求也很高,流速太慢的话喷射式冷头的性能甚至还不如粗水道设计。需要注意的是,喷射式冷头的原理注定其水流有方向性,出入水管不能接反,否则性能将会低得可怕。

喷射式冷头其实在好几年前就被发明出来了,水冷名人AKA Cathar最早设计出喷射式结构,他设计并亲手制作的Storm G4是当年性能最出色的CPU冷头,从此喷射式冷头开始盛行。后来的Storm G5纯银版更是许多水冷玩家手中的收藏极品。05年Swiftech收购了他的技术,推出Swiftech Storm作为自己的旗舰产品。有兴趣的朋友不妨上网搜索一下这些当年的奇闻轶事。



配图066: Swiftech Storm及其内部构造

后来喷射式冷头又经过多次改进,比如把传统的多个圆形小管喷嘴变为水阻较小的狭长线形喷嘴;以往底面上小面积的扰流孔洞也改成大面积的微水道设计;经典的三层式结构也被改良简化,不再需要单独的喷嘴导流层,而是以冷头内部一张薄薄的喷嘴导流板来代替,有些厂商还会提供不同的喷嘴导流板供用户自行更换,使产品更具可玩性。发展到今天的喷射式冷头,其实可视为微水道底面与导流喷射装置的结合,目前市场上性能最强的冷头大多是这种结构。






配图067 / 068: EK的Supreme HF,目前公认性能最强的冷头之一,除出厂时内置一个喷嘴导流板外,还提供了额外的四种喷嘴导流板供玩家折腾,其中甚至还有一个未开孔空白的导流板让你发挥想象力自己加工,第二张图可以看到Supreme HF的底面微水道设计。

因为喷射式冷头的性能优势广受追捧,不少厂商也开始在粗水道和微水道冷头上引入喷射元素。这些混血版冷头都有一个共同的特色,就是都没有真正的喷嘴,只是用上盖简单的把水引入底面中心部位再垂直注入,而不是真正喷射式冷头那种提升局部流速的小喷嘴设计。这样的混血设计虽不能达到真正喷射式的高性能,但是工艺要求会比真正的喷射式冷头要低,成本也随之下降,对水泵的要求也不高,至于性能也有机会比单纯的粗水道和微水道冷头好些。



配图069: EnzoTech的Sapphire SCW-REV.A,可以看见它的入水孔虽然在底面中心,但是并没有喷嘴设计。

在水冷系统中,主板和显卡是比较特殊的部件,因为它们的发热部件多而分散,可用来安装冷头的空间也相当狭窄。如果在每个发热部件上都安装冷头,那么走管的难度会很大,也难以美观,更可能导致许多主板槽位被白白占用。



配图070: 没有全覆盖冷头的年代,Swiftech使用显卡核心与显存冷头各自独立的方式,为了能把两者并联起来,甚至设计了一种专用的F形分管器(这种分管器直到现在还有得卖),不过即使如此,显卡的供电部分还是照顾不到。



配图071: 没有全覆盖冷头的年代,思民的方式也很偷懒,直接用90度弯头和管子把核心和显存冷头串联起来,水阻之大不言而喻,而且也同样无法照顾到显卡供电部分的散热。

为了克服单部件冷头缺点,就有了全覆盖冷头的诞生。全覆盖冷头不但可以用一个冷头照顾到几个发热部件,而且大大减少了所需接头的数量,令走管美观程度大大提高了。



配图072: Swiftech的Epsilon GTX295,为单PCB公版 GTX295设计的全覆盖冷头,照顾到了卡上所有发热较大的部件。一般来说显卡全覆盖冷头都会同时在冷头两面提供接口,这样走管就会方便很多,也更容易实现美观。



配图073: CWPP自行设计的公版790i主板全覆盖冷头,一个冷头覆盖了南北桥,厚度很薄,不会牺牲任何主板插槽,两组主板供电也用一个L字型冷头同时覆盖,连CPU在内五个发热部件只需三冷头六接口,走管可以很清爽漂亮。

当然,全覆盖冷头也有它明显的缺点,显卡的全覆盖冷头绝大多数时候都只会针对公版设计,非公版显卡的用户无福消受。每张显卡全覆盖冷头只能针对少数几种甚至仅一种公版显卡,想升级显卡很可能就要更换全覆盖冷头。考虑到水冷用户通常不会使用经济型显卡,只有中高端公版显卡才会有厂商愿意设计全覆盖冷头;以最近一两代的显卡而论,就是通常要AMD4850/ 5850或以上,NVIDIA GTX260或以上才会有全覆盖冷头。另外,显卡全覆盖冷头因为面积大,重量至少0.5~0.6Kg,甚至有重达1Kg的,如果是安装在显卡与地面平行的塔式机箱中,可能要对显卡做一些额外加固,防止显卡PCB长时间受力导致变形。

当然,有些显卡全覆盖冷头在设计阶段有考虑对非公版的显卡做一定程度的兼容,比如说下图这种全覆盖冷头的MOS供电部分是可以拆卸的,大多数非公版显卡至少可以拿它当覆盖核心和显存部分的“半覆盖冷头”用。当然,也正因为这种冷头把MOS部分设计为可以拆卸的,水道无法走到MOS部分,冷头主体和MOS部分之间也有接缝要靠硅脂来填补,所以对MOS部分的冷却效果会比不上那种一体化的冷头。



配图073_A:XSPC的公版GTX460冷头,供电MOS部分(图中黑色那块)可以拆卸,因为非公版显卡一般和公版显卡主要不同就是在供电部分,所以如果你的非公版显卡和公版显卡的核心以及显存部分(包括固定螺孔)是相同的,只是供电部分不同,那么可以拆掉这个冷头的黑色MOS部分,用这个冷头来冷却核心和显存部分,至于供电部分可以使用风冷,或者根据原装MOS散热部分的固定孔位自己做一块合适的,这样至少要比彻底重做一个冷头要来的划算和省力许多。

主板全覆盖冷头的通用性比显卡全覆盖冷头更糟,因为大多数主板都没有公版一说,所以每种主板全覆盖冷头只能通用于特定品牌的几款或一款主板,甚至主板厂商稍微更改设计导致部件位置或高度变化,都可能造成之前针对设计的全覆盖冷头无法继续使用(比如说技嘉X58-UD7 Rev.2和Rev.1的全覆盖冷头就是不能通用的)。一般情况下,厂商只会为那些设计制作规范稳定,而且是玩家常用的高端主板推出全覆盖冷头,比如说对应华硕和EVGA高端主板的全覆盖冷头最多,技嘉、DFI的高端主板也有部分厂商推出对应产品。

以进口冷头和接头计算的话,一个全覆盖冷头和两个接头,通常会比几个单独的冷头加一堆接头要便宜些。而且全覆盖冷头的出入水口位置都经过仔细考虑,大多数时候能避免因为各个冷头距离太近而难以走管的问题,令使用单独冷头时无法实现的走管方式成为可能。当然,全覆盖冷头先天的“专一性”,也使得它无法像单独冷头那样具备较好的通用能力。



配图073A:Koolance的MB-ASP6T7WS主板全覆盖冷头,专门为华硕P6T7 WS SuperComputer主板设计。一个冷头便能覆盖7组发热部件,包括三组供电MOSFET、南北桥芯片、两颗NF200桥接芯片。MB-ASP6T7WS只需要两个管接头即可连入水路,而且接头位置不会与CPU、内存、显卡等部件的冷头发生冲突,算得上覆盖面积最大的主板冷头之一。

全覆盖冷头的小众特性令它产量少,价格也非常昂贵,它一般都是水冷系统中最贵的冷头,全覆盖显卡冷头的价格一般都远超过CPU冷头,全覆盖主板冷头的价格更是堪比高端冷排。不过为了全覆盖冷头的便利性和YY度,众多水冷玩家还是对它趋之若鹜。

为了不阻挡PCI插槽,全覆盖冷头一般都做得比较薄,这使它难以使用喷射式设计,甚至连微水道设计都很罕见。全覆盖冷头通常只在热量较大的部分使用粗水道,其他部分则使用平板式设计。另外,为了照顾到不同部件的高度,全覆盖冷头的金属底面厚度通常都比较大,这令它对热量变化有点迟钝......以上这些先天限制,让全覆盖冷头的性能往往低于那些有精细水道、并且只针对单个热源的单部件冷头。所以,全覆盖冷头并不一定适合每个人,追求极限性能、不太在意美观、希望获得更高通用性和性价比等,都是不选择全覆盖冷头的充分理由。






配图074 / 075:不使用全覆盖冷头也未尝不可。

以我个人的习惯而言,我会优先选择显卡全覆盖冷头,因为它美观和便利的先天优势无可取代,而且还可以腾出更多的主板插槽,虽然性能稍微弱点但完全可以接受。但我会谨慎的考虑是否选择主板全覆盖冷头,因为主板的余地毕竟比显卡大些,如果在热量不高的南桥放弃水冷,或者可以通过精心规划的走管避免不美观和挡插槽的问题,那么主板全覆盖冷头的最大优势就失去了。事实上,在我自己或者帮助朋友组建的水冷系统中,选择显卡全覆盖冷头的占八成以上,而选择主板全覆盖冷头的只占三成不到。

冷头在生产出来后,其用料和设计一般就无法再改变了,作为用户能影响到冷头性能的主要手段或许就只有硅脂和水流量。硅脂的问题已经是老生常谈,这里不再讨论,主要说说流量的问题。

一直有人持流量大小与冷头性能无关的说法,我个人认为这种说法不够准确,至少这对于近两年出品的中高端冷头来说不准确。流量对冷头来说一般都是越大越好,大多数CPU冷头的最佳表现通常是从1.5~2GPM(约合337.5~450LPH)开始,假如达不到这个流量,冷头的性能就不能良好发挥;如果流量低于1.5GPM,大多数冷头的性能会有看得出的削弱,再低至1GPM性能下降就比较明显了,特别是喷射式或者带有喷射式理念的冷头更是如此。

当然,即使流量不足1GPM,只要你的冷排余量足够,大多数冷头依然可以做到比风冷强不少的性能,只是较低的流量可能无法使冷头达到其所设计的最高效能。

不要小看1.5~2GPM这个流量范围,除非你的水冷系统非常简单,只有一两个冷头且没有转角,否则大多数单泵实际上就算开足全速也达不到2GPM(包括号称泵王的D5)。在非常简单的水冷系统中,双DDC 3.2串联才能超过2GPM, 而实际上大多数人的水冷系统要比这种“非常简单的水冷系统”水阻大多了。如果你有兴趣知道自己的水冷系统能达到多少实际流量,请参阅后面章节所介绍的电子流量计。

不过,虽说流量对于冷头来说越大越好,但也要考虑到实现高流量的负面作用,比如说,要实现更大的流量,水泵就必须有更快的转速,或者需要多泵串并联才能实现,如此一来,水泵自身的发热量加大也会导致水温升高。不要轻视水泵自己产生的热量,我曾经试过把一个DDC水泵的出入水口用一段管子直接连起来,运转一分钟后就能感到水温上升了,运转十分钟后水已经有点烫手。

更大的流量会让水从冷头中吸取更多的热量,排放到水冷液中的热量将比低流量时有所上升;而水泵为了提供更大的流量也将产生更多的热量,这会导致排放到水冷液中的热量进一步上升......最终到底是冷头吸热能力增强的正面作用取胜,还是水冷液中热量上升导致水冷液升温的负面作用取胜,就要视乎你的水冷系统的具体情况了。可以肯定的是,如果你的冷排有足够的性能余量,那么这点水温的上升可以被简单的消化掉;而如果你的冷排性能余量本来就捉襟见肘,那么这种水温的上升可能导致最终结果变得更糟糕。

Skinnee Labs曾经做过一次针对超频i7的11款CPU水冷头横评,这个横评的结果与我前面所说的我经验基本相符,有兴趣的朋友请到http://www./i7-blocks-2.html(英文)查看,我在这里引用他们的两个曲线图说明问题,先翻译一下他们的测试条件:




Skinnee Labs在22℃室温和25℃水温下进行测试,使用的主板是技嘉EX58-UD5,i7 920超到200x21,并把电压刻意的提高到1.52V以发出更大热量,冷排是两个Swiftech MCR-320(360薄排),每个MCR-320都安装了六只风扇,从冷排两侧一吹一吸,并使用OCCT V3.1.0软件让CPU满载。

下面两个曲线图的纵坐标为22℃室温和25℃水温时CPU平均核心温度(注1),横坐标为泵速,以下是对泵速的说明:

        Very Low Pumping Power(超低泵速): 原装D5泵设置在1档,其他三个泵关闭。
        Low Pumping Power(低泵速): 一个安装了XSPC V3改装上盖的MCP355(即Swiftech的DDC 3.2泵)运行在最低速(约7.7V供电,约2450rpm转速),其他三个泵关闭。
        Medium Pumping Power(中泵速): 原装D5泵开至5档最高速,其他三个泵关闭。
        Medium High Pumping Power(中高泵速): 一个安装了XSPC V3改装上盖的MCP355(即Swiftech的DDC 3.2泵)运行在最高速,其他三个泵关闭。
        High Pumping Power(高泵速): 两个安装了EK V2改装上盖的MCP355(即Swiftech的DDC 3.2泵)运行在全速,其他两个泵关闭。
        Very High Pumping Power(超高泵速): 所有的三个MCP355(即Swiftech的DDC 3.2泵)和一个原装D5泵都运行在最高速,这时已经很接近于两只工作在20V电压的RD-30泵了(笔者注:RD-30是IWAKI推出的化工用电磁泵,工作电压22~26V,24V时功耗60W,最大流量900LPH,最大扬程8米)。

注1:实际测试中,每个冷头的吸热情况不同,受冷头影响系统的水温也会有一点不同。为了公平比较,Skinnee Labs给出的温度是经过复杂的热力学公式精心计算之后的结果。


第一个曲线图的结果包括了泵的热量,但排除了冷排的散热能力,你可以把这个冷排视为散热能力无限大,从这个曲线图可以看到水流量越高CPU的温度就越低,不过到了高泵速后大多数冷头的温度下降就很有限了:



配图076

第二个曲线图在第一个曲线图的基础上加入了冷排的散热能力考量,从这个曲线图可以看到,水泵流速从高泵速变为超高泵速时,所有的CPU温度反而上升了,而高泵速和超高泵速的主要区别,就是超高泵速条件下水泵数量比起高泵速条件下多了两个。所以,这时候应该是在冷排散热能力一定的前提下,四个泵全速工作的发热造成的水温上升负面作用,压过了流量上升让冷头从CPU吸热加快的正面作用。



配图077

这两个曲线图反应了水道密集的CPU冷头对流量变化的反应,而对于水道比较简单的显卡/主板全覆盖冷头、主板Mosfet冷头以及单纯的北桥冷头,我个人的经验是它们同样喜欢大流量。在满载测试中,我那张使用Koolance全覆盖冷头的GTX285,显卡核心温度在2GPM流量时会比1.5 GPM流量时低1.5℃,比1GPM时低4℃!

所以,如果你很在意温度高低,先不要急着换冷排或者冷头,不妨试试看水泵全速运转时的表现。如果确实很在意泵的安静,或许你应该考虑换个泵或者做好隔音措施,又或者使用外置方式,把泵放到你基本听不见的远处。

水箱(Reservoir):水箱在水冷系统中的主要作用是排出气泡和方便加水。除非你使用带有散热片的立方米级金属水箱,否则水箱的容量与水冷系统的散热能力没什么关系。水箱大的水冷系统在刚开机时温度上升会慢些,但长时间使用后的温度与小水箱的水冷系统其实是一样的。水冷系统的散热绝大部分靠冷排和风扇,而不是靠水箱。网上经常看见推荐大水箱(其实也就大几百毫升)的帖子,这其实是不少水冷菜鸟的常犯的错误。

当然,如果你使用小体积的被动散热水箱,并且放置在风道良好的地方,或许有机会令空载时的温度略微下降一丁点,不过在满载时......这种水箱的安慰成分居多。现在的水冷系统越来越少使用被动散热水箱,正是因为它那种以体积换性能的方式效率太低。不过,借鉴传统被动散热水箱外观元素追求个性化外观的倒是不少。



配图078: AquaComputer的纯铜版和镀镍版小水箱

下图是一只典型的管式水箱,它有四个不同方向的接口可供灵活选择,我选择最左边和最下面的两个接口画图作示范,蓝色箭头表明了水流的方向,而红色箭头则表明了排泡的方向。水箱排泡的原理很简单,水中的气泡比较轻所以会上浮,这样循环一段时间后水路中的空气就会被陆续排出。当然,水箱只能排出那些已经混入水冷液中的气泡,对诸如冷排死角和水管高处积存的气泡无能为力。水泵的流速对排泡也是一个相当重要的因素,如果你的排泡遇到困难,我个人的经验是一开始先让水泵全速运转并且轻微摇晃冷排和水管,先排出较大的气泡,然后再降低泵速让水冷液中细微的气泡可以有时间通过水箱逸出。



配图079: EK Multioption RES X2 水箱

在水冷系统的规划中,水箱的出水口应当要高于水泵的吸水口,至少水箱在加水后的水平面要高于泵的吸水口,避免让水泵浪费动力来吸水。另外,水冷用的水泵一般都是离心泵设计,水必须填满泵腔才能让泵正常出水,通常厂商也都会在说明书中要求你这样做,水箱出水口高于水泵则可以在水箱加水时自然的注满泵腔,省去了不少折腾。

如果你要较真的话,好吧......水冷系统其实可以不需要单独的水箱,但我依然建议初学者使用水箱,为什么?请看下面三种不用水箱做法的优劣:

第一种不用独立水箱的方法是T-Line,它其实是在靠近泵入水口处安装一个T型三通,然后向上延伸出一条水管,加水和排泡都通过这条水管进行。如果你仔细看三通和那根水管,再对比上图的的管式水箱,或许你可以发现所谓的T-Line其实和水箱结构相似,就是直径小很多而已。T-Line的好处是省去了水箱的体积和成本,柔软的水管可以灵活的放置,占用空间很少。缺点主要就是排泡很慢,第一次加水的时候快慢不容易把握好,总之,这基本上是老鸟们的玩法。



配图080: 上图中泵左侧黑色T型三通所连接的管子就是T-Line,顶部有一个金黄色的水堵。

第二种不用独立水箱的方法是有些冷排自带了水箱,其实就是在冷排的联通室多开一个水口。虽然这好像有点耍赖,但确实提高了这些冷排的性价比,不但能节约空间,还可以减少接头的开销。不过,如果你想要用冷排自带的水箱,那么这个冷排必须要垂直于地面安装,并且把联通室那头的接口朝上。这种冷排自带水箱一般都会把加水口放在冷排的一侧,所以请务必注意冷排水流方向,确保加水口下面的水流方向是朝下的,而且务必在关泵之后才能加水!不然你就等着洗脸吧..... 另外,冷排自带的水箱容积都很小,所以加水时要小心注入避免水溢出来。



配图081: Magicool推出的Elegant系列透明冷排,120/240/360型号都有附带水箱,另外还Swiftech也有几款型号以Res结尾的冷排也有附带水箱(不透明)。

还有一点很要命,除了上图这种透明的冷排,市场上绝大多数的冷排都是不透明的,也就是你不拧开加水口的话看不见水面高低......作为变通的方法,你可以利用加水口的螺纹装一个接头,然后好像T-Line那样伸出一截透明管子,把水加到管子里刚好能看见就行。讨厌的是,一般的冷排加水口为了方便加水,螺孔都比标准的G 1/4螺孔大,所以你可能还要去弄个转接头....而这么折腾下来,估计也和弄个单独的水箱没什么两样了。

注意:有些冷排顶部会有个很小的水堵,这种设计是用来手动排出冷排内空气用的,因为直径太小,这种冷排一般不能用来兼做水箱。



配图082: Phobya Xtreme 200冷排顶部的排气口。

第三种不用水箱的方式是那些整体发售的套装成品,在出厂时已经加注好水冷液并且完成排泡,正常情况下两三年内不需要再加水。这类产品大多是只针对单个部件的,一般只针对CPU或者显卡(比如大家熟悉的海盗船H50),也有直接集成在成品主机里面的(比如后期的水冷版苹果PowerMac G5和戴尔XPS 730 H2O)。这些产品基本不需维护,用户甚至感觉不到自己在使用水冷,虽然性能还过得去(比大多数风冷强,效能上可以逼近或者打平高端风冷散热器),但远无法和中高端水冷系统媲美,而且完全不能扩充升级,对于DIY来说相当缺乏成就感,所以水冷玩家对这类产品向来比较冷淡。



配图083: Corsair H50,水泵与冷头集成在一起,出厂时已经加注好水冷液并且完成排泡。

不过,这类套装产品至少继承了水冷系统部件分散的特性,可以让那些CPU部分无法安装高塔风冷散热器、但是机箱上有12cm风扇开孔的机器享受到不错的散热效果。

水箱最常用的材质依次是压克力、POM、铝、不锈钢、铜。其中压克力和POM材质的水箱占了绝大多数。如果按照设计和安装的方式来划分,水箱大致可以划分为管式、光驱位、非标准三类。

管式水箱历史最悠久,优点是排泡和加水都很方便,加工简单,可以通过控制管长度来方便的实现不同容量,通过转接环可以把几个短水箱接驳成长水箱,另外进出水口的布局也很灵活。管式水箱的缺点是:为了加水方便,通常只能垂直于地面安装,需要用专门的扣具才能固定在机身上。另外,因为管式水箱内部是圆柱形,水流在其中旋转的阻力较低,因此高度不大的管式水箱在流速高的时候容易产生漩涡,当漩涡激烈到一定程度时,就可能导致泵吸入气泡,而且激烈的漩涡本身也可能发出一定的水流声。



配图084

管式水箱直到今天仍然是最受欢迎的类型之一,针对它在流速大时容易产生漩涡的缺点,EK等厂商特别在水箱中设计了扰流片,破坏漩涡产生的条件以大大减弱或消除漩涡。针对它安装不便的缺点,EK推出了可以把管式水箱直接安装在泵盖上的专用转接环(EK-Multioption LINK),Danger Den还有可以利用12cm风扇位安装的管式水箱支架。



配图085: EK的ANTI Cyclon扰流片,可以基本消除管式水箱的漩涡。



配图086: 通过水泵上盖和水箱的匹配座(EK-Multioption LINK ),EK的部分改装泵盖可以把水箱直接安装在泵盖上,非常灵活。



配图087: Danger Den的DD-RAD管式水箱,特别设计的支架可以让它安装在12cm风扇位上。

顾名思义,光驱位水箱可以安装在机箱光驱位,这种设计解决了管式水箱安装不便的问题,而且能与机箱外观协调,平整的表面设计让光驱位水箱便于安装LED灯孔等辅助部件,观察水位也变得更为容易。但光驱位水箱也有明显的缺点:使用它意味着你的水路一定要走到光驱位,对于某些机箱来说可能会显得累赘和不够美观。如果是高度较小的单光驱位水箱,在流量大时形成的水面波动容易使吸水口露出水面导致吸空,令水路中混入更多的气泡,所以要选择那些有防吸空装置的设计。光驱位水箱的加水口通常设计在顶部,在装入光驱位后要重新加水非常不便,所以如果选用光驱位水箱,水管最好留长几公分,以便能把水箱稍微挪出光驱位露出加水口。



配图088: XSPC的单光驱位水箱,有防吸空设计,标配有银和黑两种铝拉丝面板和蓝色LED灯。

有些光驱位水箱除了提供顶部加水口外,也可以通过拆卸面板来加水,只要把机箱转90度时光驱位水箱的面板朝上,就可以拆卸水箱面板来加水,虽然这样的方式不太方便,但也算多了一种可以加水的途径,在某些特殊情况下可能有用,比如内部空间狭窄,只能装一个光驱位水箱而且不便拆卸的小机箱。



配图089: AquaComputer的aquabox professional 5单光驱位水箱。

非标准类的水箱既长得不像管式,也无法安装在光驱位中,所以它们的出路除了针对性的定制之外,基本上就只有做得小巧精致,这样可以在机箱里见缝插针的安装。









配图090 / 091:Swiftech MCRES Micro Revision 2,从它和接头的对比就可以看出它有多小巧,这么小的水箱甚至可以直接用双面胶贴在机身上。此水箱的最新版本提供了四个接口,方便加设放水口或者在水箱中安装测温探头。

除了以上三种单纯的水箱外,泵箱结合也是一种很受欢迎的形式,所谓泵箱结合就是把水泵改装上盖与水箱做在一起。这样不但令泵的性能提升,整体的体积更加紧凑,还可以节省一对接头,同时价格也比较经济。前面介绍的那种可装在泵盖上的EK管式水箱就是其中的一种,不过大多数泵箱结合的方式是不可拆分的。

泵箱结合不但可以做非标准外形,也可以做成管式和光驱位,下面是几个我个人觉得比较出色的例子:



配图092: XSPC的DDC泵箱(左)和D5泵箱(右),将水泵的改装上盖与水箱做成一体,性能强劲而且价格经济,是我个人偏爱的选择之一。



配图093: Koolance的COV-RP450改装D5上盖可以和Koolance自家的管式水箱合体或者分拆



配图094: XSPC的双光驱位双DDC泵箱(左)可以组成双水路,而双光驱位D5泵箱(右)则是个不错的D5泵光驱位泵箱。



配图095: PrimoChill的杰作Typhoon III D5泵箱,通过改良D5泵腔创造了首个单泵双水路设计!双水路时能实现比其他D5改装上盖更强劲的性能。Typhoon III刚推出时甚至没有脸(面板),但还是受到发烧友的热烈追捧,PrimoChill后来才为它推出了铝制的专用面板。对Typhoon III 感兴趣的朋友可以参考这个评测:http:///primochill-typhooniii.html (英文),可惜它在国内很难找到。

只要你不是使用巨型被动散热水箱,就可以认为水箱是水冷系统中对性能最没影响力的部件之一,所以更多的应该考虑美观和安装、维护方便的因素,甚至可以DIY最合适自己的水箱,尽情发挥你的想象力吧!

看个新鲜:下图是AquaComputer推出的一款水箱适配器,最特别的地方是,它上面有对应水冷液瓶口的螺纹,因此它可以直接使用水冷液的瓶子或者任何瓶口螺纹相同的瓶子作为水箱,而且还带有LED照明。

096.jpg (53.09 KB, 下载次数: 11)

下载附件

2010-8-19 00:16 上传



配图096

嗯,挑出来的刺仅代表我个人的意见......


这里只是第一页的,红字为我的意见,黑字为引用部分,可能看得不是那么仔细,有些会挑不出来~~~~

一、所以以上原文和译文
感觉在“以上”后面加个“的”字会通顺点~~*/-70
二、配图0001 / 0002: Pawel的MOD作品Lilianna ,基于联力V2010机箱。更多精美图片请见Pawel的Pisca相册。对Lilianna感兴趣的朋友,请查看包含整个制作过程的Worklog:http://forum./t473139.html 波兰语,长达187页!我虽然看不懂波兰语,但在逐页翻阅后,依然感动于他前后7个版本的执着和巨细无遗的近千张过程图片。
这段话说了两次,有点罗嗦。
三、本是为满足汽车和大型电脑的散热需求而开发的;


    显然不可能,要说广义的水冷,估计要说到洗澡降温什么的了,这个远古时代就有,即使是狭义的,工业上的也肯定比汽车和电脑的早,不可能是为了“ 满足汽车和大型电脑的散热需求而开发的”,只是借鉴而已。

四、也就是说要让空气上升4℃多的热量才能令水温上升1℃

         这里应标明“相同质量”。

五、特别是一些高热量的顶尖显卡(比如GTX480)
高发热量
水冷能有效降低超频所产生的高温

降低高温,好像词语搭配不当,改成“水冷能有效解决因为超频而造成的高温问题”比较好,当然,也有其他的改法~
七、大多数水冷系统完全可以用 600~1000转的风扇解决各部件产生的热量,
同样问题,不可以“解决热量”,也许可以“大多数水冷系统用 600~1000转的风扇已经有比较好的性能”,这一句在不改变句意的情况下比较难改,或者你自己想想吧......*/-49
八、凭借导热和吸热效率都很高的水作为冷却液
同样是病句,改为“用导热和吸热效率都很高的水作为冷却液”比较好
九、几个低速风扇的低噪音不会叠加为高噪音
其实是会叠加的,不过不算太明显而已~~~
十、散热形式将更加严峻
散热形式怎么严峻了??很有问题啊,这里不知道怎么对付了~~~*/-15
十一、虽然我这个水平比较臭的所谓水冷玩家很希望有一天能够全民水冷,但理智也告诉我这恐怕不可能。
嗯,这里只是发表一下个人意见而已,你自己也知道不可能了,如果真的必须全部用水冷,那这个世界就悲剧了......*/-19

十二、温差让CPU的热量可以传递给冷头,温差让冷头的热量可以传给水冷液,温差让水冷液的热量可以传给冷排或者被动散热水箱,温差也让冷排或者被动散热水箱的热量最终可以释放到空气中。温差越大,散热效率就越高,温差越小,散热的效率就越低。但是最终不管风冷还是水冷系统都会实现热平衡,也就是维持在一个固定的温差,这个温差的大小在大多数时候直接与部件的档次挂钩,能压住和能压好是两种完全不同的档次。
这里有点罗嗦了,另外可以加入热力学第二定律和导热基本定律。
十三、假如不算二手便宜货,而且搭配合理的话,我个人认为1000元是自己组装一套完整水冷的最低标准,不足1000块的水冷完全可能输给500块的风冷。但是1000块以上,以散热效果论就是水冷的天下。
反正我不同意,你知道的,不解释了。
PS:这段话会吓跑新人的~~~~~~*/-41

十四、铝:这是低端冷头和低端冷排常用的材料,因相比铜,铝的价格便宜而且加工简单。但在水冷系统中用铝制部件要注意:如果水路中同时有铜制和铝制部件,而铝制部件又没有经过特殊表面处理的话,长期使用后铝会因为水冷液的电离作用产生化学反应(特别是使用普通蒸馏水或自来水时更加明显),进而在铝材接触水冷液的表面产生很难清理的杂质,这些杂质会削弱散热能力甚至造成水路堵塞。我的建议是:如果你不确定铝制部件是否做了表面处理,水路中最好不要铜铝混用,尤其是要小心低价的铝制冷排和铝制冷头。但只要是不和水冷液接触的部件,就大可放心的使用铝制品。
嗯,这个怎么说呢,我自己也腐蚀过一个铝的冷排(可能是腐蚀),一般来说,水和铝或者氧化铝这层保护膜基本不反应的(铝表面在空气中会生成天然的氧化膜),也就是说理论上是不会有什么问题的,只能说它抗腐蚀能力不如铜,但是铝的腐蚀问题也不是一个两个人说,貌似工业上也有这个说法,也许水冷的环境比较复杂吧。不过,有一点可以肯定的是,腐蚀绝对和铜铝混用无关,你这里想说的是原电池反应吧,原电池反应一般有三个条件:一、电解质溶液。二、两种活动性不同的金属。三、形成闭合回路。显然,在水冷系统中,一般铜铝混用的情况都是一个部件是铜,而另一个部件是铝,中间是不导电的软管连接的,也就是说除非是用金属管,否则不可能出现原电池反应,即使腐蚀了,也和铜铝混用无关。(顺便打个广告,水冷液怎么能省掉缓蚀功能呢*/-49)
十五、有些狂热玩家还会在水路中放入小片纯度达99.9%的银条(silver coil),据说有抗菌防腐的妙用
不是据说了,是的确是,另外不用99.9%也可以,只不过是银溶解在水中的银离子起到抗菌的作用,只要水道里有银就能发挥作用。(再打个广告,我自己做的水冷液也有这个功能*/-34
十六、图中体积较小的是安装了EK改装上盖的D5泵,体积较大的是IWAKI生产的化工用磁力泵RD-30,工作电压22~26V,24V时功耗60W,最大流量900LPH,最大扬程8米。是水手们心目中真正的“泵王”。
“泵王”,之前讲过了。
十七、这些冷排通常都只能安装在机箱外面。
删掉“都”吧,“通常”和“都”意思上重复了,而且意思好像有点矛盾。
十八、而扁铜管与散热鳍片之间的焊接似乎是用锡来做的
没什么问题啊,焊接用锡很正常啊,在风冷中也很常见,不然怎么焊接啊,其它的焊接工艺还真不多啊,难不成用铝热反应来焊接?*/-50
十九、这位大婶天天身处金山银山之中,真是幸福啊
明明是铜山,而且冷排大家都知道价格虚高,而且是很离谱的那种,说不上什么金山银山,而且不见得幸福,参考银行职员。*/-49

顺便提两点意见:
1、令人发指这个词好像用得太多了

    2、希望能尽量统一文章中流量的单位。

嗯,连语法都挑,好像太苛刻了,这只是网文而已,不是出版物,而且我自己也避免不了这些问题*/-40~~~~~~~~~~~~~~~~~~~~~~


可能有些会有错误的*/-49,发表一下意见吧。

很高兴看到终于有人站出来挑错,呵呵。有些我接受,有些不接受,不过按照前缀的数字说一下我的看法。

一。语法问题,接受。已经更改为“所以,以上的原文和译文...”

二。这里是故意的,相比Pawel为拙文做出的贡献和共享精神,我觉得重复一次没啥,呵呵。

三。这里是随手写的,确实有不妥的地方,接受你的建议,在原文中删除了这句话。

四。这里是我不够严谨,接受你的建议加上“相同质量”。

五。这里我倒是觉得没啥不妥.....高发热量和高热量在本句中应该都能看明白吧,又不是说减肥食品...不过改了也无妨。

六。虽然感觉没太多不妥,不过还是综合你的意见,修改为“水冷能够更有效的压制超频所带来的高热量”。

七。虽然感觉没太多不妥,不过还是综合你的意见,修改为“仅用 600~1000转的风扇,大多数水冷系统即可散发各部件产生的热量”。

八。这里我坚持原文,其实完整的原文是:“凭借导热和吸热效率都很高的水作为冷却液,加上超大的散热面积,水冷相比风冷有先天的性能优势。”

九。这个和人耳的敏感曲线有关,不过还是接受你的意见,改为“几个低速风扇的低噪音不会是一个低速风扇的几倍,而只会略高于单个低速风扇”。

十。这里是错别字,应该是“散热形势将更加严峻”。

十一。这个......倒是未必,呵呵,如果水冷得到长足的发展,或许最终的产品不会是我们今天这样的形式.....这里只是为了表达一种情绪.....

十二。这里是故意的:),与其写一些大多数人直接跳过的热力学定律,还不如直接描述实际情况,这是杂志用于改善阅读体验和骗稿费的经验.....

十三。这里也是故意的,或许是我骄傲,我觉得与其为了吸引更多人加入而刻意的降低门槛,不如设置一定的门槛来只吸引特定层次的人,水冷是一个比较折腾的事情,没时间没想法没热忱没基本的金钱支持是不太可能玩好的。何况就我个人的看法,国内缺少的不是山寨,而是高端或者有创意的中端,拙文从一开始就没有鼓励山寨的意思,是走比较保守也比较稳妥的常规路线。我不否认某些方面的知识和技能可以等同于金钱,从而降低总体成本,但是至少这些方面应该不是主流......欢迎你保留意见,只有一种意见的话,就不好玩了,呵呵!

十四。实际上也有部分铜铝直接混合的情况,比如说铝排铜接头,泵箱对接头直接连接铜铝部件之类,铝制部件在水冷中腐蚀的情况很常见,水冷的情况比较复杂,似乎不能只用电池反应来解释,既然拙文是面向初学者的入门读物,所以我在这里宁可武断些,尽量避免初学者因此走弯路而丧失信心。

十五。这个没有经过个人实验,只是在网上看到国外玩家对于silver coil的反馈,没有考虑过更低纯度的银是否有同等效果,已经在原文中注明了你的意见。

十六。我并没有在推荐的泵列表中加入RD-30,因为它使用24V电压,水口不标准,体积大而且对水阻有一定要求,列出RD-30的原因更多是为了指出把D5视为“泵王”是不正确的,每种水泵都有自己适合的场合。这也是我为什么在RD-30的“泵王”一词上是用引号的。

十七。这个.....持保留意见,我不是个很讲究语法的人,呵呵,我比较追求阅读时的顺畅感。

十八。还有穿FIN和超声波焊接等手段,也有含铜合金焊接或者冷压的.....锡焊接是使用最广泛的方法,但不是最好的。

十九。这个.....您似乎严重缺乏幽默感.....

令人发指....我比较喜欢这个词,呵呵。

文中的流量单位确实没有统一,因为事实上这几种流量和扬程/尺寸单位在现实中都有应用,我故意保持了不同的流量单位,一来可以督促有心的朋友自己换算几次记住规律,对不同单位有个大概的认识,二来不管统一到哪种单位,都是不合理/不全面的,所以索性维持原貌。

Anyway,感谢你的挑错,我已经在一楼的文章末尾对你做特别感谢,呵呵。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多