光速可变理论光速可变理论认为光速(以c表示)是时空的函数,因此不是确定的数值。在经典物理学中,真空中的光速是一个常数,在国际单位制中被定义为c=299792458米/秒。经典物理学中光速可变可以在某些情形下出现,比如一些已确立理论的等价公式中,再如大多数非主流的引力和宇宙学理论里。著名的光速可变说包括爱因斯坦1911年的理论、罗伯特·迪克1957年的理论以及1980年代后期几名研究者的理论。因为这些理论与广泛接受的学说相冲突,光速可变理论具很大争议性。 目录 爱因斯坦1911年的尝试[编辑]
爱因斯坦在1907年着手研究光速可变。[1] 爱因斯坦说: 在一篇1912年的论文中,[3]他总结道: 但是,爱因斯坦推导出在太阳附近的光线偏转为“将近一弧秒”,仅为后来其广义相对论得到正确数值的一半。1919年,爱丁顿的测量验证了广义相对论的预测结果。但是爱因斯坦却因其它原因放弃了光速可变理论。值得注意的是,他在1911年仅考虑了时间可变。在广义相对论中,在不同的理论语境下,空间和时间的测量都可能受到附近质量的影响。 迪克1957年的尝试和马赫原理[编辑]1957年罗伯特·迪克提出了一种光速可变的引力理论。[4] 在一个视界不断膨胀的宇宙中,越来越多的质量对折射率有贡献,因此迪克认为宇宙中c随时间而减慢,这给宇宙学的红移提供了一个另一个解释(p. 374)。[4]应当指出的是,迪克的理论同国际单位制中的定义c=299792458米/秒并无冲突,因为时间(秒)和长度(米)单位和皆可以变化(p. 366)。 其它与爱因斯坦和迪克理论有关的光速可变尝试[编辑]虽然迪克提出了广义相对论的替代理论,光速随空间变化的概念并不违反广义相对论。其实这个概念隐含在广义相对论的坐标空间描述中。若干教科书中曾提及,比如威尔[5]书中的公式6.14和
6.15,以及温伯格[6]书中的公式9.2.5
( “... 注意光子速度是 ... 根据这个公式,有人提出了与广义相对论所有已知测试结果相一致的光速可变模型,[7] 作为宇宙膨胀替代理论的现代光速可变理论[编辑]为了解释宇宙学中的视界问题并找到能解释宇宙膨胀的新理论,让-皮埃尔·伯蒂特于1988年、[11][12][13][14]约翰·莫法特于1992年[15] 在伯蒂特等的理论中,所有物理学常数协同变化而导致时间和空间标度因子的变化与c的变化同时发生。因此所有物理方程和物理常数在宇宙的演化中保持不变。爱因斯坦场方程因爱因斯坦常数中c和G的同时变化而保持不变。后来的模型将物理常数的变化限制在宇宙早期的更高能量密度,比如在辐射主控时期的起始阶段,那时的时空等同于度規共形平直的空间-熵。[23][24]值得注意的是,虽然这是第一个公开发表、至今唯一一个不用改写现代物理学公式的光速可变模型,伯蒂特等的论文在后世的光速可变文献中很少得到引用。
莫法特和 其他的光速可变理论[编辑]虚光子[编辑]在某些量子场论的计算中,虚光子可以在短距离内以不同于光速的速度运动。但是,这并不意味着光速可以超越。有人宣称量纲量c随时间的变化其实没有任何意义(非量纲量,比如精细结构常数随时间的的变化,是有意义的)。在某些有争议的宇宙学理论中,光速还可以通过改变狭义相对论的假设来变化。[来源请求] 光子速度变化[编辑]光子传递电磁力,没有静止质量。经典物理学中,光子可以具有极小但存在的质量,和中微子一样。这些光子可以以小于狭义相对论定义的光速运动,并可以在三个方向上极化。但在量子场论中,光子有质量的假设与规范不变性及可重整化性相悖,因此常被忽略。大质量光子的量子理论在用威尔森有效场论处理量子场论时可以成立。在这种方法中,根据光子质量由希格斯机制产生或由临时插入普罗卡拉格朗日密度方程而产生,各种观察/实验所暗含的边界条件也许不同。因此,光速不是一个常数。[27] 量子理论中的光子速度变化[编辑]在量子场论中,海森堡测不准原理指出光子可以在短时间内以任何速度运动。在费曼图中,这种光子被称为虚光子,可以通过它们在质壳外运动而加以辨别。这种光子可以具有任何速度,包括超越光速。费曼说:
“
”
但是这些虚光子并不违反因果律和狭义相对论,因为它们无法直接观测到,理论中也无法违反因果关系传递信息。费曼图和虚光子并非是真实发生的物理过程,而是一种方便的计算工具(某些情形碰巧含有快于光速的速度向量)。 与其它常数以及其变化的关系[编辑]引力常数 G[编辑]1937年,狄拉克和其他人开始研究如果自然常数随时间变化可能造成的后果。[29] 但是,费曼在他著名的物理学讲座中指出,[30]在过去40亿年里,根据对地球和太阳系的观测,引力常数的变化极有可能小于狄拉克的预计(但这需要假定引力常数无法改变其它常数)。 精细结构常数α[编辑]一个研究组在研究遥远类星体时,声称发现精细结构常数在十万分之一水平上的变化。[31]这一结果受到研究界的争议。其他研究类星体的研究组称在更高精度上没有发现精细结构常数的变化。[32][33][34]此外,有人在研究奥克洛天然核反应堆某些同位素丰度时,用更加严格的限定条件,结果也表明精细结构常数不存在变化。[35][36] 保罗·戴维斯等人提出,理论上有可能分辨哪些构成精细结构常数的量纲常数(基本电荷、普朗克常数以及光速)导致其变化。[37]但是,此说未被广泛接受。[38][39] 对光速可变理论的批判[编辑]无量纲量和量纲量[编辑]因为量纲量会根据选择不同的单位而变化,有人曾试图説明这种量变化的实际意义。比如约翰·贝洛曾写到: 任何物理定律的公式都可以通过量纲的对消而只剩下无量纲量,这被称为无量纲化。另外,物理学者可以通过选择单位使得物理常数c、G、?=h/(2π)、4πε0和kB数值为1,每一个物理量都可以以自己对应的普朗克单位归一化。因此,有人认为阐明一个量纲量的演化毫无意义。[41]当物理定律的公式使用普朗克单位、无量纲化之后,具有量纲的物理常数如c、G、?、ε0和kB都不存在了。依照假定单位而变化的引力常数G,其相对应的无量纲量最终会变成普朗克质量和基本粒子质量的比值。某些与光速相关的重要无量纲量,比如精细结构常数和质子电子质量比,其变化是有意义的,仍然被研究所关注。[42] 和c之定义的关系[编辑]对可变光速理论而言,如果国际单位制中米的定义回归其1960年代以前的定义,即国际米原器的话,测定到的光速就会根据国际米原器长度的变化而变化。那麽c的变化就等于国际米原器与普朗克长度的无量纲比值的变化,或者国际单位制中秒同普朗克时间的无量纲比值的变化,或两者兼而有之。如果构成国际米原器的原子数量保持不变(稳定的原型尺应当如此),那麽c的变化就等于普朗克长度与原子玻尔半径的无量纲比值的变化,或者普朗克时间同一个铯-133原子震动周期的无量纲比值的变化,或两者兼而有之。 对光速可变宇宙学的批评[编辑]乔治·埃利斯曾担忧变化的光速将导致大部分现代物理学不得不重写,因为现存体系基本上建立于光速不变的基础上。[43]埃利斯称,任何光速可变理论1)必须重新定义距离的测量,2)必须给出广义相对论中度規张量的新表达式,3)也许和洛伦玆不变性相冲突,4)必须修改麦克斯韦方程,5)必须和其他物理理论保持一致。这些判据是否适用于爱因斯坦1911年的理论和迪克1957年的理论尚有争议。[44]可变光速宇宙学仍然属于非主流物理学。 参考文献 |
|