分享

【干货】你不可不知的碳材料发展史——未来用炭

 zhusuhua63tsg 2017-04-09


小烯导读


碳,生命之源,它是地球上一切有机体生物的骨架元素,是构成人体最重要的元素。未来用炭Carbon in Future主要以富勒烯、炭纳米管、石墨烯的形式,被用在通讯、太空探索、生物医药等领域。



碳,生命之源,它是地球上一切有机体生物的骨架元素,是构成人体最重要的元素。

-----------------------------------

【碳材料发展史】

未来用炭Carbon in Future主要以富勒烯、炭纳米管、石墨烯的形式被用在通讯、太空探索、生物医药等领域。


-----------------------------------

富勒烯

富勒烯(Fullerene) 是单质碳被发现的第三种同素异形体。任何由碳一种元素组成,以球状,椭圆状,或管状结构存在的物质,都可以被叫做富勒烯,富勒烯指的是一类物质。富勒烯与石墨结构类似,但石墨的结构中只有六元环,而富勒烯中可能存在五元环。1985年Robert Curl等人制备出了C60 。1989年,德国科学家Huffman和Kraetschmer的实验证实了C60的笼型结构,从此物理学家所发现的富勒烯被科学界推向一个崭新的研究阶段。富勒烯的结构和建筑师Fuller的代表作相似,所以称为富勒烯。


应用

工业

富勒烯是一种新发现的工业材质, 它的特性: 1.硬度比钻石还硬2.轫度(延展性)比钢强100倍 3.它能导电,导电性比铜强,重量只有铜的六分之一4.它的成分是碳,所以可从废弃物中提炼。


可想像我们的未来生活中将有“无金属电线”“富勒烯(非金属)钢筋的建筑物”“富勒烯防弹背心”“富勒烯汽车壳”……


构想中的“东京湾金字塔城”亦将富勒烯列为主要建材,纳米巴克管(富勒烯)分子可无限延伸(巴克管长度越长,其原子数越多,所以巴克管的原子数不一定是C60),且巴克管分子是碳原子自动组合而成。


应用

电、光、磁

C60本身的对称性决定了C60自身有非线性光学性质。作为一种新的化合物,研究其电、磁、光等应用是非常重要的,实际上C60就是因为掺杂碱金属在一定条件下具有超导电性,其电荷转移复合物有铁磁性而引起人们极大兴趣和关注。


应用

物理性质

润滑剂和研磨剂C60具有特殊的圆球形状,是所有分子中最圆的分子;另外, C60的结构使其具有特殊的稳定性。在分子水平上,单个C60分子是异常坚硬的,这使得C60可能成为高级润滑剂的核心材料。


·CVD金刚石膜

富勒烯的另一潜在的应用是它们可作为金刚石薄膜生长的均匀成核位置而起重要作用。


金刚石薄膜在军事方面具有许多应用价值,如作为装甲车表面的抗冲击覆盖层,用于制成光学(X射线,粒子束)窗口,半导体晶片,高硬度表面齿轮,金刚石-纤维合成材料,以及高温和防辐射电子器件等。


·高强度碳纤维

1991年日本电气公司的饭岛发现了一种管状碳——巴基管,巴基管具有独特的几何结构和奇妙的导电性质,同时具有高抗张强度和高度热稳定性。巴基管的这种特殊的电学和机械性能使其具有巨大的应用价值。


·高能轰击粒子

C60能够得到或失去电子形成离子,带电巴基球可以用作物理碰撞的高能轰击粒子。

 

应用

电化学方面


·光导体


光导材料是复印机、传真机和激光打印机的基本部分,旧的光导材料使用硒作为感光剂,较为先进的有机光导聚合物已经代替了硒材料。美国杜邦公司的研究人员发现用1%的C60(可能是C60和C70的混合物)掺杂的PVK聚合物是一类全新的高性能光导体,类似的产品已经应用于静电复印技术中。


·超导材料


掺杂C60超导体的发现是超导领域的又一重大成果,这种超导体具有相对较高的临界温度,掺杂C60超导体的临界温度不仅远远高于所有的有机分子超导体,而且也大大高于以前发现的金属和合金超导体,只比炙手可热的氧化物陶瓷超导体低。


·非线性光学器件


实验和理论研究表明,C60和C70等富勒烯都是良好的非线性光学材料, C60 /C70混合物( C70约占10%)的非线性光学系数约为1.1×10-9esu, C76甚至还具有光偏振性。


C60薄膜具有很高的光学效率,这一性质使得 C60在激光光学通信和光学计算机方面有着重要的潜在应用,并有望在短期内付诸实现。


应用

护肤品

由于富勒烯能够亲和自由基,具有极强的抗氧化能力,能够起到活化皮肤细胞,预防肌肤衰亡的作用。关于富勒烯在清除自由基方面的功效目前已有近3万篇论文被发表,近3千个专利获得了认可。正因如此,21世纪以来富勒烯开始被用作化妆品原料,具有抗皱、美白、预防衰老的卓越价值,成为备受瞩目的尖端美容成分。


应用

多元体研究


富勒烯衍生物与卟啉、二茂铁等富电子基团共价或非共价形成多元体,用于研究分子内能量、电荷转移、光致能量和电荷转移。

应用

有机太阳能电池

自1995年俞刚博士将富勒烯的衍生物PCBM([6,6]-phenyl-c61-butyricacid methyl ester,简称PC61BM或PCBM)用于本体异质结有机太阳能电池以来,有机太阳能电池得到了长足的发展,其中有三家公司已经将掺杂PCBM的有机太阳能电池商用,迄今大部分有机太阳能电池以富勒烯做为电子受体材料。

-----------------------------------


碳纳米管

1991年日本NEC公司实验室的专家饭岛(Iijima)发现了由管状的同轴纳米管组成的碳分子即碳纳米管。碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。



分类


碳纳米管按照石墨烯片的层数分类可分为:单壁碳纳米管(Single-walled nanotubes, SWNTs)和多壁碳纳米管(Multi-walled nanotubes, MWNTs),多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相比,单壁管是由单层圆柱型石墨层构成,其直径大小的分布范围小,缺陷少,具有更高的均匀一致性。


应用前景


炭纳米管可实现存储器微型化

碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。适当加热,氢气就可以慢慢释放出来。研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。


  在碳纳米管的内部可以填充金属、氧化物等物质,这样碳纳米管可以作为模具,首先用金属等物质灌满碳纳米管,再把碳层腐蚀掉,就可以制备出最细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。


利用碳纳米管的性质可以制作出很多性能优异的复合材料。例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。


  碳纳米管还给物理学家提供了研究毛细现象机理最细的毛细管,给化学家提供了进行纳米化学反应最细的试管。碳纳米管上极小的微粒可以引起碳纳米管在电流中的摆动频率发生变化,利用这一点,1999年,巴西和美国科学家发明了精度在10-17kg精度的“纳米秤”,能够称量单个病毒的质量。随后德国科学家研制出能称量单个原子的“纳米秤”。


-----------------------------------



石墨烯



石墨烯(Graphene)是一种二维碳材料,是单层石墨烯、双层石墨烯和多层石墨烯的统称。于2004年问世,其发现者英国曼彻斯特大学安德烈-海姆教授于2010年获得诺贝尔物理学奖。


分类




单层石墨烯(Graphene)


指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。


双层石墨烯(Bilayeror double-layer graphene)


指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。


少层石墨烯(Few-layer)


指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。


多层或厚层石墨烯(multi-layer graphene)


指厚度在10层以上10nm以下苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。


主要应用


随着批量化生产以及大尺寸等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,最先实现商业化应用的领域可能会是移动设备、航空航天、新能源电池领域。


消费电子展上可弯曲屏幕备受瞩目,成为未来移动设备显示屏的发展趋势。柔性显示未来市场广阔,作为基础材料的石墨烯前景也被看好。


新能源电池也是石墨烯最早商用的一大重要领域。表面附有石墨烯纳米图层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源汽车电池的容量不足以及充电时间长的问题。


由于高导电性、高强度、超轻薄等特性,石墨烯在航天军工领域的应用优势也是极为突出的。


-----------------------------------



“碳”

多元化的性能,

使得科学家为之着迷,

对“碳”的研究也成为了

他们永不放弃的课题。


资料来源:东洋炭素,烯碳资讯编辑整理,转载请注明出处

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多