分享

[电源电路原理图详解]电路原理图详解

 山城雾中人 2017-04-19

篇一 : 电路原理图详解

电路原理图难吗?(不难-带你一天搞定)

电器修理、电路设计都是要通过分析电路原理图,了解电器的功能和工作原理,才能得心应手开展工作的。作为从事此项工作的同志,首先要有过硬的基本功,要能对有技术参数的电路原理图进行总体了解,能进行划分功能模块,找出信号流向,确定元件作用。若不知电路的作用,可先分析电路的输入和输出信号之间的关系。如信号变化规律及它们之间的关系、相位问题是同相位,或反相位。电路和组成形式,是放大电路,振荡电路,脉冲电路,还是解调电路。

  要学会维修电器设备和设计电路,就必须熟练掌握各单元电路的原理。会划分功能块,能按照不同的功能把整机电路的元件进行分组,让每个功能块形成1个具体功能的元件组合,如基本放大电路,开关电路,波形变换电路等。
要掌握分析常用电路的几种方法,熟悉每种方法适合的电路类型和分析步骤。
1.交流等效电路分析法
  首先画出交流等效电路,再分析电路的交流状态,即:电路有信号输入时,电路中各环节的电压和电流是否按输入信号的规律变化、是放大、振荡,还是限幅削波、整形、鉴相等。
2.直流等效电路分析法
  画出直流等效电路图,分析电路的直流系统参数,搞清晶体管静态工作点和偏置性质,级间耦合方式等。分析有关元器件在电路中所处状态及起的作用。例如:三极管的工作状态,如饱和、放大、截止区,二极管处于导通或截止等。
3.频率特性分析法
  主要看电路本身所具有的频率是否与它所处理信号的频谱相适应。粗略估算一下它的中心频率,上、下限频率和频带宽度等,例如:各种滤波、陷波、谐振、选频等电路。
4.时间常数分析法
  主要分析由R、L、C及二极管组成的电路、性质。时间常数是反映储能元件上能量积累和消耗快慢的1个参数。若时间常数不同,尽管它的形式和接法相似,但所起的作用还是不同,常见的有耦合电路、微分电路、积分电路、退耦电路、峰值检波电路等。
最后,将实际电路与基本原理对照,根据元件在电路中的作用,按以上的方法1步步分析,就不难看懂。当然要真正融会贯通还需要坚持不懈地学习。

电子设备中有各种各样的图。能够说明它们工作原理的是电原理图,简称电路图

电路图有2种

1种是说明模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。

另1种是说明数字电子电路工作原理的。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能的。为了和模拟电路的电路图区别开来,就把这种图叫做逻辑电路图,简称逻辑图

除了这2种图外,常用的还有方框图。它用1个框表示电路的一部分,它能简洁明了地说明电路各部分的关系和整机的工作原理。

  一张电路图就好象是一篇文章,各种单元电路就好比是句子,而各种元器件就是组成句子的单词。所以要想看懂电路图,还得从认识单词——元器件开始。有关电阻器电容器电感线圈晶体管等元器件的用途、类别、使用方法等内容可以点击本文相关文章下的各个链接,本文只把电路图中常出现的各种符号重述一遍,希望初学者熟悉它们,并记住不忘。

电阻器与电位器(什么是电位器)

  符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b)表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在R 的后面再加1个说明它有调节功能的字符“ P ”。

  在某些电路中,对电阻器的功率有一定要求,可分别用图 1 中( e )、( f )、( g )、(h )所示符号来表示。

  几种特殊电阻器的符号:

第 一种是热敏电阻符号,热敏电阻器的电阻值是随外界温度而变化的。有的是负温度系数的,用 NTC来表示;有的是正温度系数的,用 PTC 来表示。它的符号见图( i ),用 θ 或 t°来表示温度。它的文字符号是“ RT ”。

第 2 种是光敏电阻器符号,见图 1 ( j),有2个斜向的箭头表示光线。它的文字符号是“ RL ”。

第 3 种是压敏电阻器的符号。压敏电阻阻值是随电阻器两端所加的电压而变化的。符号见图 1( k ),用字符 U 表示电压。它的文字符号是“ RV”。这3种电阻器实际上都是半导体器件,但习惯上我们仍把它们当作电阻器。

第 4 种特殊电阻器符号是表示新近出现的保险电阻,它兼有电阻器和熔丝的作用。当温度超过500℃ 时,电阻层迅速剥落熔断,把电路切断,能起到保护电路的作用。它的电阻值很小,目前在彩电中用得很多。它的图形符号见图 1 ( 1),文字符号是“ R F ”。

电容器的符号(电容器是什么?)

  详见图2 所示,其中( a )表示容量固定的电容器,( b)表示有极性电容器,例如各种电解电容器,( c )表示容量可调的可变电容器。( d )表示微调电容器,( e)表示1个双连可变电容器。电容器的文字符号是 C 。

电感器与变压器的符号(线圈电感)

  电感线圈在电路图中的图形符号见图 3 。其中( a )是电感线圈的一般符号,( b)是带磁芯或铁芯的线圈,( c )是铁芯有间隙的线圈,( d )是带可调磁芯的可调电感,( e)是有多个抽头的电感线圈。电感线圈的文字符号是“ L ”。

  变压器的图形符号见图 4 。其中( a )是空芯变压器,( b)是磁芯或铁芯变压器,( c )是绕组间有屏蔽层的铁芯变压器,( d )是次级有中心抽头的变压器,( e )是耦合可变的变压器,( f)是自耦变压器,( g )是带可调磁芯的变压器,( h )中的小圆点是变压器极性的标记。

送话器、拾音器和录放音磁头的符号

  送话器的符号见图 5 ( a )( b )( c ),其中( a)为一般送话器的图形符号,( b )是电容式送话器,( c )是压电晶体式送话器的图形符号。送话器的文字符号是“ BM ”。

  拾音器俗称电唱头。图 5 ( d )是立体声唱头的图形符号,它的文字符号是“ B ”。图 5 (e )是单声道录放音磁头的图形符号。如果是双声道立体声的,就在符号上加1个“ 2 ”字,见图( f )。

扬声器、耳机的符号

  扬声器、耳机都是把电信号转换成声音的换能元件。耳机的符号见图 5 ( g )。它的文字符号是“ BE ”。扬声器的符号见图 5 ( h ),它的文字符号是“ BL ”。

接线元件的符号

  电子电路中常常需要进行电路的接通、断开或转换,这时就要使用接线元件。接线元件有2大类:1类是开关;另1类是接插件。

( 1)开关的符号

  在机电式开关中至少有1个动触点和1个静触点。当我们用手扳动、推动或是旋转开关的机构,即可使动触点和静触点接通或者断开,达到接通或断开电路的目的。动触点和静触点的组合一般有3 种: ① 动合(常开)触点,符号见图 6 ( a ); ② 动断(常闭)触点,符号是图 6 ( b ); ③动换(转换)触点,符号见图 6 ( c )。1个最简单的开关只有一组触点,而复杂的开关就有好几组触点。

点下方表示推拉的动作;( d )表示旋转式开关,带 3 极同时动合的触点;( e )表示推拉式 1×6波段开关;( f )表示旋转式 1×6 波段开关的符号。开关的文字符号用“ S ”,对控制开关、波段开关可以用“ SA”,对按钮式开关可以用“ SB ”。

  开关在电路图中的图形符号见图 7 。其中( a )表示一般手动开关;( b)表示按钮开关,带1个动断触点;( c )表示推拉式开关,带一组转换触点;图中把扳键画在触点下方表示推拉的动作;( d)表示旋转式开关,带 3 极同时动合的触点;( e )表示推拉式 1×6 波段开关;( f )表示旋转式 1×6波段开关的符号。开关的文字符号用“ S ”,对控制开关、波段开关可以用“ SA ”,对按钮式开关可以用“ SB ”。

( 2)接插件的符号

  接插件的图形符号见图 8 。其中( a)表示1个插头和1个插座,(有2种表示方式)左边表示插座,右边表示插头。( b )表示1个已经插入插座的插头。( c )表示1个 2极插头座,也称为 2 芯插头座。( d )表示1个 3 极插头座,也就是常用的 3 芯立体声耳机插头座。( e )表示1个 6极插头座。为了简化也可以用图( f )表示,在符号上方标上数字 6 ,表示是 6 极。接插件的文字符号是 X 。为了区分,可以用“XP ”表示插头,用“ XS ”表示插座。

继电器的符号(继电器是墨子啊?)

  因为继电器是由线圈触点组两部分组成的,所以继电器在电路图中的图形符号也包括两部分:1个长方框表示线圈;一组触点符号表示触点组合。当触点不多电路比较简单时,往往把触点组直接画在线圈框的一侧,这种画法叫集中表示法,如图9 ( a)。当触点较多而且每对触点所控制的电路又各不相同时,为了方便,常常采用分散表示法。就是把线圈画在控制电路中,把触点按各自的工作对象分别画在各个受控电路里。这种画法对简化和分析电路有利。但这种画法必须在每对触点旁注上继电器的编号和该触点的编号,并且规定所有的触点都应该按继电器不通电的原始状态画出。图9 ( b )是1个触摸开关。当人手触摸到金属片 A 时, 555 时基电路输出( 3 端)高电位,使继电器 KR1通电,触点闭合使灯点亮使电铃发声。 555 时基电路是控制部分,使用的是 6 伏低压电。电灯和电铃是受控部分,使用的是 220伏市电。

  继电器的文字符号都是“ K ”。有时为了区别,交流继电器用“ KA”,电磁继电器和舌簧继电器可以用“ KR ”,时间继电器可以用“ KT ”。

电池及熔断器符号

  电池的图形符号见图 10 。长线表示正极,短线表示负极,有时为了强调可以把短线画得粗一些。图 10( b )是表示1个电池组。有时也可以把电池组简化地画成1个电池,但要在旁边注上电压或电池的数量。图 10 ( c)是光电池的图形符号。电池的文字符号为“ GB ”。熔断器的图形符号见图 11 ,它的文字符号是“ FU ”。

二极管三极管符号

  半导体二极管在电路图中的图形符号见图 12 。其中( a)为一段二极管的符号,箭头所指的方向就是电流流动的方向,就是说在这个二级管上端接正,下端接负电压时它就能导通。图( b)是稳压二极管符号。图( c )是变容二极管符号,旁边的电容器符号表示它的结电容是随着二极管两端的电压变化的。图( d)是热敏二极管符号。图( e )是发光二极管符号,用2个斜向放射的箭头表示它能发光。图( f)是磁敏二极管符号,它能对外加磁场作出反应,常被制成接近开关而用在自动控制方面。二极管的文字符号用“ V ”,有时为了和三极管区别,也可能用“ VD ”来表示。

三极管。

  由于 PNP 型和 NPN型三极管在使用时对电源的极性要求是不同的,所以在三极管的图形符号中应该能够区别和表示出来。图形符号的标准规定:只要是 PNP型三极管,不管它是用锗材料的还是用硅材料的,都用图 13 ( a )来表示。同样,只要是 NPN型三极管,不管它是用锗材料还是硅材料的,都用图 13 ( b )来表示。图 13 ( c )是光敏三极管的符号。图 13 ( d)表示1个硅 NPN 型磁敏三极管

晶闸管、单结晶体管、场效应管的符号

  晶闸管是晶体闸流管或可控硅整流器的简称,常用的有单向晶闸管、双向晶闸管和光控晶闸管,它们的符号分别为图 14 中的( a )( b)( c )。晶闸管的文字符号是“ VS ”。

单结晶体管的符号见图 15

 

 利用电场控制的半导体器件,称为场效应管,它的符号如图 16 所示,其中( a )表示 N沟道结型场效应管,( b )表示 N 沟道增强型绝缘栅场效应管,( c )表示 P 沟道耗尽型绝缘栅场效应管。它们的文字符号也是“VT ”。

2009-10-27 09:23

前面介绍了电路图中的元器件的作用和符号。一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。好象孩子们玩的积木,虽然只有十来种或二30种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。(这个狗屎说的很经典啊!)

  按单元电路的功能可以把它们分成若干类,每1类又有好多种,全部单元电路大概总有几百种。下面我们选最常用的基本单元电路来介绍。让我们从电源电路开始。

一、电源电路的功能和组成(和编程一样 模块化的嘛~~~~)

  每个电子设备都有1个供给能量的电源电路电源电路有整流电源、逆变电源和变频器3种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。

  电子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把 220伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高,所以有时还需要再增加1个稳压电路。因此整流电源的组成一般有4大部分,见图1 。其中变压电路其实就是1个铁芯变压器,需要介绍的只是后面3种单元电路。

二、整流电路

  整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。

 ( 1 )半波整流

  半波整流电路只需1个二极管,见图 2 ( a )。在交流电正半周时 VD 导通,负半周时 VD截止,负载 R 上得到的是脉动的直流电

 ( 2 )全波整流

  全波整流要用2个二极管,而且要求变压器有带中心抽头的2个圈数相同的次级线圈,见图 2 ( b)。负载 R L 上得到的是脉动的全波整流电流,输出电压比半波整流电路高。

 ( 3 )全波桥式整流

  用 4 个二极管组成的桥式整流电路可以使用只有单个次级线圈的变压器,见图 2 ( c)。负载上的电流波形和输出电压值与全波整流电路相同。

 ( 4 )倍压整流

用多个二极管和电容器可以获得较高的直流电压。图 2 ( d )是1个二倍压整流电路。当 U2为负半周时 VD1 导通, C1 被充电, C1 上最高电压可接近 1.4U2 ;当 U2 正半周时 VD2 导通, C1 上的电压和U2 叠加在一起对 C2 充电,使 C2 上电压接近 2.8U2 ,是 C1 上电压的 2 倍,所以叫倍压整流电路。

三、滤波电路

  整流后得到的是脉动直流电,如果加上滤波电路滤除脉动直流电中的交流成分,就可得到平滑的直流电。

 ( 1 )电容滤波

  把电容器和负载并联,如图 3 ( a),正半周时电容被充电,负半周时电容放电,就可使负载上得到平滑的直流电。

 ( 2 )电感滤波

  把电感和负载串联起来,如图 3 ( b ),也能滤除脉动电流中的交流成分。

 ( 3 ) L 、 C 滤波

  用 1 个电感和 1 个电容组成的滤波电路因为象1个倒写的字母“ L ”,被称为 L 型,见图 3( c )。用 1 个电感和 2 个电容的滤波电路因为象字母“ π ”,被称为 π 型,见图 3 ( d),这是滤波效果较好的电路。

 ( 4 ) RC 滤波

  电感器的成本高、体积大,所以在电流不太大的电子电路中常用电阻器取代电感器而组成 RC滤波电路。同样,它也有 L 型,见图 3 ( e ); π 型,见图 3 ( f )。

四、稳压电路

  交流电网电压的波动和负载电流的变化都会使整流电源的输出电压和电流随之变动,因此要求较高的电子电路必须使用稳压电源。

  (1 )稳压管并联稳压电路

用1个稳压管和负载并联的电路是最简单的稳压电路,见图 4 ( a )。图中 R是限流电阻。这个电路的输出电流很小,它的输出电压等于稳压管的稳定电压值 V Z 。

 (2 )串联型稳压电路

  有放大和负反馈作用的串联型稳压电路是最常用的稳压电路。它的电路和框图见图 4 ( b )、( c)。它是从取样电路( R3 、 R4 )中检测出输出电压的变动,与基准电压( V Z )比较并经放大器( VT2 )放大后加到调整管(VT1)上,使调整管两端的电压随着变化。如果输出电压下降,就使调整管管压降也降低,于是输出电压被提升;如果输出电压上升,就使调整管管压降也上升,于是输出电压被压低,结果就使输出电压基本不变。在这个电路的基础上发展成很多变型电路或增加一些辅助电路,如用复合管作调整管,输出电压可调的电路,用运算放大器作比较放大的电路,以及增加辅助电源和过流保护电路等。

 ( 3 )开关型稳压电路

  近年来广泛应用的新型稳压电源是开关型稳压电源。它的调整管工作在开关状态,本身功耗很小,所以有效率高、体积小等优点,但电路比较复杂。

  开关稳压电源从原理上分有很多种。它的基本原理框图见图 4 ( d )。图中电感 L和电容 C 是储能和滤波元件,二极管 VD 是调整管在关断状态时为 L 、 C滤波器提供电流通路的续流二极管。开关稳压电源的开关频率都很高,一般为几~几十千赫,所以电感器的体积不很大,输出电压中的高次谐波也不多。

  它的基本工作原理是 : 从取样电路( R3 、 R4)中检测出取样电压经比较放大后去控制1个矩形波发生器。矩形波发生器的输出脉冲是控制调整管( VT )的导通和截止时间的。如果输出电压U 0 因为电网电压或负载电流的变动而降低,就会使矩形波发生器的输出脉冲变宽,于是调整管导通时间增大,使 L 、 C储能电路得到更多的能量,结果是使输出电压 U 0 被提升,达到了稳定输出电压的目的。

 ( 4 )集成化稳压电路

  近年来已有大量集成稳压器产品问世,品种很多,结构也各不相同。目前用得较多的有三端集成稳压器,有输出正电压的 CW7800系列和输出负电压的 CW7900 系列等产品。输出电流从 0.1A ~ 3A ,输出电压有 5V 、 6V 、 9V 、 12V 、15V 、 18V 、 24V 等多种。

  这种集成稳压器只有3个端子,稳压电路的所有部分包括大功率调整管以及保护电路等都已集成在芯片内。使用时只要加上散热片后接到整流滤波电路后面就行了。外围元件少,稳压精度高,工作可靠,一般不需调试。

  图 4 ( e )是1个三端稳压器电路。图中 C 是主滤波电容, C1 、 C2是消除寄生振荡的电容 ,VD 是为防止输入短路烧坏集成块而使用的保护二极管。

五、电源电路读图要点和举例

  电源电路是电子电路中比较简单然而却是应用最广的电路。拿到一张电源电路图时,应该: ① 先按“整流— 滤波 — 稳压”的次序把整个电源电路分解开来,逐级细细分析。 ②逐级分析时要分清主电路和辅助电路、主要元件和次要元件,弄清它们的作用和参数要求等。例如开关稳压电源中,电感电容和续流二极管就是它的关键元件。③ 因为晶体管有 NPN 和 PNP型2类,某些集成电路要求双电源供电,所以1个电源电路往往包括有不同极性不同电压值和好几组输出。读图时必须分清各组输出电压的数值和极性。在组装和维修时也要仔细分清晶体管和电解电容的极性,防止出错。④ 熟悉某些习惯画法和简化画法。 ⑤ 最后把整个电源电路从前到后全面综合贯通起来。这张电源电路图也就读懂了。

 例 1 电热毯控温电路

 图 5 是1个电热毯电路。开关在“ 1 ”的位置是低温档。 220伏市电经二极管后接到电热毯,因为是半波整流,电热毯两端所加的是约 100 伏的脉动直流电,发热不高,所以是保温或低温状态。开关扳到“2 ”的位置, 220 伏市电直接接到电热毯上,所以是高温档。

例2 高压电子灭蚊蝇器

 图 6 是利用倍压整流原理得到小电流直流高压电的灭蚊蝇器。 220伏交流经过四倍压整流后输出电压可达 1100伏,把这个直流高压加到平行的金属丝网上。网下放诱饵,当苍蝇停在网上时造成短路,电容器上的高压通过苍蝇身体放电把蝇击毙。苍蝇尸体落下后,电容器又被充电,电网又恢复高压。这个高压电网电流很小,因此对人无害。

  由于昆虫夜间有趋光性,因此如在这电网后面放1个 3瓦荧光灯或小型黑光灯,即可诱杀蚊虫和有害昆虫。

 例 3 实用稳压电源

 图 7 是1个实用的稳压电源。输出电压 3 ~ 9 伏可调,输出电流最大 100毫安。这个电路就是串联型稳压电源电路。要注意的是 :① 整流桥的画法和图 2 ( c )不同,实际上它就是桥式整流电路。 ②这个电路使用 PNP 型锗管,所以输出是负电压,正极接地。 ③用2个普通二极管代替稳压管。任何二极管的正向压降都是基本不变的,因此可用二极管代替稳压管。 2AP 型二极管的正向压降约是 0.3伏, 2CP 型约是 0.7 伏, 2CZ 型约是 1 伏。图中用了2个 2CZ 二极管作基准电压。 ④取样电阻是1个电位器,所以输出电压是可调的。

2009-10-27 09:24

能够把微弱的信号放大的电路叫做放大电路放大器。例如助听器里的关键部件就是1个放大器

放大电路的用途和组成

  放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中频和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。

  读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态2种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后即可把整个电路串通起来进行全面综合。

下面我们介绍几种常见的放大电路。

低频电压放大器

  低频电压放大器是指工作频率在 20 赫~ 20千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。

 ( 1 )共发射极放大电路

  图 1 ( a )是共发射极放大电路。 C1 是输入电容, C2 是输出电容,三极管 VT就是起放大作用的器件, RB 是基极偏置电阻 ,RC 是集电极负载电阻。 1 、 3 端是输入, 2 、 3 端是输出。 3端是公共点,通常是接地的,也称“地”端。静态时的直流通路见图 1 ( b ),动态时交流通路见图 1 ( c)。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。

( 2 )分压式偏置共发射极放大电路

  图 2 比图 1 多用 3 个元件。基极电压是由 RB1 和 RB2分压取得的,所以称为分压偏置。发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE则有直流负反馈作用。所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。如果送回部分和原来的输入部分是相减的,就是负反馈。图中基极真正的输入电压是RB2 上电压和 RE 上电压的差值,所以是负反馈。由于采取了上面2个措施,使电路工作稳定性能提高,是应用最广的放大电路。

 ( 3 )射极输出器

  图 3 ( a )是1个射极输出器。它的输出电压是从射极输出的。图 3 ( b)是它的交流通路图,可以看到它是共集电极放大电路。

  这个图中,晶体管真正的输入是 V i 和 V o的差值,所以这是1个交流负反馈很深的电路。由于很深的负反馈,这个电路的特点是:电压放大倍数小于 1 而接近 1,输出电压和输入电压同相,输入阻抗高输出阻抗低,失真小,频带宽,工作稳定。它经常被用作放大器的输入级、输出级或作阻抗匹配之用。

 ( 4 )低频放大器的耦合

  1个放大器通常有好几级,级与级之间的联系就称为耦合。放大器的级间耦合方式有3种: ①RC耦合,见图 4 ( a )。优点是简单、成本低。但性能不是最佳。 ② 变压器耦合,见图 4 ( b)。优点是阻抗匹配好、输出功率和效率高,但变压器制作比较麻烦。 ③ 直接耦合,见图 4 ( c)。优点是频带宽,可作直流放大器使用,但前后级工作有牵制,稳定性差,设计制作较麻烦。

功率放大器

  能把输入信号放大并向负载提供足够大的功率的放大器叫功率放大器。例如收音机的末级放大器就是功率放大器。

 ( 1 )甲类单管功率放大器

  图 5 是单管功率放大器, C1 是输入电容, T 是输出变压器。它的集电极负载电阻 Ri′是将负载电阻 R L 通过变压器匝数比折算过来的:

  RC′= ( N1 N2 ) 2 RL=N 2 RL

  负载电阻是低阻抗的扬声器,用变压器可以起阻抗变换作用,使负载得到较大的功率。

  这个电路不管有没有输入信号,晶体管始终处于导通状

,静态电流比较大,困此集电极损耗较大,效率不高,大约只有 35%。这种工作状态被称为甲类工作状态。这种电路一般用在功率不太大的场合,它的输入方式可以是变压器耦合也可以是 RC 耦合。

 ( 2 )乙类推挽功率放大器

  图 6是常用的乙类推挽功率放大电路。它由2个特性相同的晶体管组成对称电路,在没有输入信号时,每个管子都处于截止状态,静态电流几乎是零,只有在有信号输入时管子才导通,这种状态称为乙类工作状态。当输入信号是正弦波时,正半周时VT1 导通 VT2 截止,负半周时 VT2 导通 VT1截止。2个管子交替出现的电流在输出变压器中合成,使负载上得到纯正的正弦波。这种两管交替工作的形式叫做推挽电路。

  乙类推挽放大器的输出功率较大,失真也小,效率也较高,一般可达 60 %。

 ( 3 ) OTL 功率放大器

  目前广泛应用的无变压器乙类推挽放大器,简称 OTL 电路,是1种性能很好的功率放大器。为了

  易于说明,先介绍1个有输入变压器没有输出变压器的 OTL 电路,如图 7 。

  这个电路使用2个特性相同的晶体管,两组偏置电阻和发射极电阻的阻值也相同。在静态时, VT1 、VT2 流过的电流很小,电容 C 上充有对地为 1 2 E c 的直流电压。在有输入信号时,正半周时 VT1 导通, VT2截止,集电极电流 i c1 方向如图所示,负载 RL 上得到放大了的正半周输出信号。负半周时 VT1 截止, VT2 导通,集电极电流i c2 的方向如图所示, RL 上得到放大了的负半周输出信号。这个电路的关键元件是电容器 C ,它上面的电压就相当于 VT2的供电电压。

  以这个电路为基础,还有用三极管倒相的不用输入变压器的真正 OTL 电路,用 PNP 管和 NPN管组成的互补对称式 OTL 电路,以及最新的桥接推挽功率放大器,简称 BTL 电路等等。

直流放大器

  能够放大直流信号或变化很缓慢的信号的电路称为直流放大电路直流放大器。测量和控制方面常用到这种放大器。

 ( 1 )双管直耦放大器

  直流放大器不能用 RC 耦合或变压器耦合,只能用直接耦合方式。图 8是1个两级直耦放大器。直耦方式会带来前后级工作点的相互牵制,电路中在 VT2 的发射极加电阻 R E以提高后级发射极电位来解决前后级的牵制。直流放大器的另1个更重要的问题是零点漂移。所谓零点漂移是指放大器在没有输入信号时,由于工作点不稳定引起静态电位缓慢地变化,这种变化被逐级放大,使输出端产生虚假信号。放大器级数越多,零点漂移越严重。所以这种双管直耦放大器只能用于要求不高的场合。

 ( 2 )差分放大器

  解决零点漂移的办法是采用差分放大器,图 9 是应用较广的射极耦合差分放大器。它使用双电源,其中VT1 和 VT2 的特性相同,两组电阻数值也相同, R E 有负反馈作用。实际上这是1个桥形电路,2个 R C和2个管子是4个桥臂,输出电压 V 0 从电桥的对角线上取出。没有输入信号时,因为 RC1=RC2和两管特性相同,所以电桥是平衡的,输出是零。由于是接成桥形,零点漂移也很小。

  差分放大器有良好的稳定性,因此得到广泛的应用。

集成运算放大器

  集成运算放大器是1种把多级直流放大器做在1个集成片上,只要在外部接少量元件就能完成各种功能的器件。因为它早期是用在模拟计算机中做加法器、乘法器用的,所以叫做运算放大器。它有十多个引脚,一般都用有3 个端子的三角形符号表示,如图 10 。它有2个输入端、 1 个输出端,上面那个输入端叫做反相输入端,用“ —”作标记;下面的叫同相输入端,用“+”作标记。

  集成运算放大器可以完成加、减、乘、除、微分、积分等多种模拟运算,也可以接成交流或直流放大器应用。在作放大器应用时有:

 ( 1 )带调零的同相输出放大电路

  图 11 是带调零端的同相输出运放电路。引脚 1 、 11 、 12 是调零端,调整 RP可使输出端( 8 )在静态时输出电压为零。 9 、 6 两脚分别接正、负电源。输入信号接到同相输入端( 5),因此输出信号和输入信号同相。放大器负反馈经反馈电阻 R2 接到反相输入端( 4 )。同相输入接法的电压放大倍数总是大于 1的。

 ( 2 )反相输出运放电路

  也可以使输入信号从反相输入端接入,如图 12 。如对电路要求不高,可以不用调零,这时可以把 三个调零端短路。

  输入信号从耦合电容 C1 经 R1 接入反相输入端,而同相输入端通过电阻 R3接地。反相输入接法的电压放大倍数可以大于 1 、等于 1 或小于 1 。

 ( 3 )同相输出高输入阻抗运放电路

  图 13 中没有接入 R1 ,相当于 R1 阻值无穷大,这时电路的电压放大倍数等于 1,输入阻抗可达几百千欧。

放大电路读图要点和举例

  放大电路是电子电路中变化较多和较复杂的电路。在拿到一张放大电路图时,首先要把它逐级分解开,然后一级一级分析弄懂它的原理,最后再全面综合。读图时要注意:①在逐级分析时要区分开主要元器件和辅助元器件。放大器中使用的辅助元器件很多,如偏置电路中的温度补偿元件,稳压稳流元器件,防止自激振荡的防振元件、去耦元件,保护电路中的保护元件等。②在分析中最主要和困难的是反馈的分析,要能找出反馈通路,判断反馈的极性和类型,特别是多级放大器,往往以后级将负反馈加到前级,因此更要细致分析。③ 一般低频放大器常用 RC 耦合方式;高频放大器则常常是和 LC调谐电路有关的,或是用单调谐或是用双调谐电路,而且电路里使用的电容器容量一般也比较小。 ④注意晶体管和电源的极性,放大器中常常使用双电源,这是放大电路的特殊性。

 例 1 助听器电路

 图 14 是1个助听器电路,实际上是1个 4 级低频放大器。 VT1 、 VT2 之间和 VT3 、VT4 之间采用直接耦合方式, VT2 和 VT3 之间则用 RC 耦合。为了改善音质, VT1 和 VT3 的本级有并联电压负反馈(R2 和 R7 )。由于使用高阻抗的耳机,所以可以把耳机直接接在 VT4 的集电极回路内。 R6 、 C2 是去耦电路, C6是电源滤波电容。


例 2 收音机低放电路

  图 15 是普及型收音机的低放电路。电路共 3 级,第 1 级( VT1 )前置电压放大,第 2级( VT2 )是推动级,第 3 级( VT3 、 VT4 )是推挽功放。 VT1 和 VT2 之间采用直接耦合, VT2 和 VT3、 VT4 之间用输入变压器( T1 )耦合并完成倒相,最后用输出变压器( T2 )输出,使用低阻扬声器。此外, VT1本级有并联电压负反馈( R1 ), T2 次级经 R3 送回到 VT2 有串联电压负反馈。电路中 C2的作用是增强高音区的负反馈,减弱高音以增强低音。 R4 、 C4 为去耦电路, C3 为电源的滤波电容。整个电路简单明了。

2009-10-27 09:25

振荡电路的用途和振荡条件

  不需要外加信号就能自动地把直流电能转换成具有一定振幅和一定频率的交流信号的电路就称为振荡电路振荡器。这种现象也叫做自激振荡。或者说,能够产生交流信号的电路就叫做振荡电路

  1个振荡器必须包括三部分:放大器正反馈电路选频网络放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率f 0 能通过,使振荡器产生单一频率的输出。

  振荡器能不能振荡起来并维持稳定的输出是由以下2个条件决定的;1个是反馈电压 u f和输入电压 U i 要相等,这是振幅平衡条件。二是 u f 和 u i必须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断1个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。

  振荡器按振荡频率的高低可分成超低频( 20 赫以下)、低频( 20 赫~ 200千赫)、高频( 200 千赫~ 30 兆赫)和超高频( 10 兆赫~ 350兆赫)等几种。按振荡波形可分成正弦波振荡和非正弦波振荡2类。

  正弦波振荡器按照选频网络所用的元件可以分成 LC振荡器RC振荡器石英晶体振荡器3种。石英晶体振荡器有很高的频率稳定度,只在要求很高的场合使用。在一般家用电器中,大量使用着各种L C 振荡器和 RC 振荡器。

LC 振荡器

  LC 振荡器的选频网络是 LC 谐振电路。它们的振荡频率都比较高,常见电路有 3 种。

 ( 1 )变压器反馈 LC 振荡电路

  图 1 ( a )是变压器反馈 LC 振荡电路。晶体管 VT 是共发射极放大器。变压器 T的初级是起选频作用的 LC 谐振电路,变压器 T 的次级向放大器输入提供正反馈信号。接通电源时, LC回路中出现微弱的瞬变电流,但是只有频率和回路谐振频率 f 0 相同的电流才能在回路两端产生较高的电压,这个电压通过变压器初次级 L1、 L2 的耦合又送回到晶体管 V 的基极。从图 1 ( b)看到,只要接法没有错误,这个反馈信号电压是和输入信号电压相位相同的,也就是说,它是正反馈。因此电路的振荡迅速加强并最后稳定下来。

  变压器反馈 LC振荡电路的特点是:频率范围宽、容易起振,但频率稳定度不高。它的振荡频率是: f 0 =1 / 2π LC。常用于产生几十千赫到几十兆赫的正弦波信号。

  ( 2 )电感三点式振荡电路

      

  图 2 ( a )是另1种常用的电感三点式振荡电路。图中电感 L1 、 L2 和电容C 组成起选频作用的谐振电路。从 L2 上取出反馈电压加到晶体管 VT 的基极。从图 2 ( b)看到,晶体管的输入电压和反馈电压是同相的,满足相位平衡条件的,因此电路能起振。由于晶体管的 3 个极是分别接在电感的 三个点上的,因此被称为电感三点式振荡电路。

  电感三点式振荡电路的特点是:频率范围宽、容易起振,但输出含有较多高次调波,波形较差。它的振荡频率是: f 0=1/2π LC ,其中 L=L1 + L2 + 2M 。常用于产生几十兆赫以下的正弦波信号。

 ( 3 )电容三点式振荡电路

  还有1种常用的振荡电路是电容三点式振荡电路,见图 3 ( a )。图中电感 L和电容 C1 、 C2 组成起选频作用的谐振电路,从电容 C2 上取出反馈电压加到晶体管 VT 的基极。从图 3 ( b)看到,晶体管的输入电压和反馈电压同相,满足相位平衡条件,因此电路能起振。由于电路中晶体管的 3 个极分别接在电容 C1 、 C2 的3 个点上,因此被称为电容三点式振荡电路。

  电容三点式振荡电路的特点是:频率稳定度较高,输出波形好,频率可以高达 100兆赫以上,但频率调节范围较小,因此适合于作固定频率的振荡器。它的振荡频率是: f 0 =1/2π LC ,其中 C= C 1 C 2/C 1 +C 2 。

  上面 三种振荡电路中的放大器都是用的共发射极电路。共发射极接法的振荡器增益较高,容易起振。也可以把振荡电路中的放大器接成共基极电路形式。共基极接法的振荡器振荡频率比较高,而且频率稳定性好。

 RC 振荡器

  RC 振荡器的选频网络是 RC 电路,它们的振荡频率比较低。常用的电路有2种。

 ( 1 ) RC 相移振荡电路

  图 4 ( a )是 RC 相移振荡电路。电路中的 3 节 RC网络同时起到选频和正反馈的作用。从图 4 ( b )的交流等效电路看到:因为是单级共发射极放大电路,晶体管 VT 的输出电压 U o与输出电压 U i 在相位上是相差 180° 。当输出电压经过 RC 网络后,变成反馈电压 U f 又送到输入端时,由于 RC网络只对某个特定频率 f 0 的电压产生 180° 的相移,所以只有频率为 f 0 的信号电压才是正反馈而使电路起振。可见 RC网络既是选频网络,又是正反馈电路的一部分。

  RC相移振荡电路的特点是:电路简单、经济,但稳定性不高,而且调节不方便。一般都用作固定频率振荡器和要求不太高的场合。它的振荡频率是:当3 节 RC

网络的参数相同时: f 0 = 1 2π 6RC 。频率一般为几十千赫。

 ( 2 ) RC 桥式振荡电路

  图 5 ( a )是1种常见的 RC 桥式振荡电路。图中左侧的R1C1 和 R2C2 串并联电路就是它的选频网络。这个选频网络又是正反馈电路的一部分。这个选频网络对某个特定频率为 f 0的信号电压没有相移(相移为 0° ),其它频率的电压都有大小不等的相移。由于放大器有 2 级,从 V2 输出端取出的反馈电压 U f是和放大器输入电压同相的( 2 级相移 360°=0° )。因此反馈电压经选频网络送回到 VT1 的输入端时,只有某个特定频率为 f0 的电压才能满足相位平衡条件而起振。可见 RC 串并联电路同时起到了选频和正反馈的作用。

  实际上为了提高振荡器的工作质量,电路中还加有由 R t 和 R E1组成的串联电压负反馈电路。其中 R t 是1个有负温度系数的热敏电阻,它对电路能起到稳定振荡幅度和减小非线性失真的作用。从图 5 (b )的等效电路看到,这个振荡电路是1个桥形电路。 R1C1 、 R2C2 、 R t 和 R E1 分别是电桥的 四个臂,放大器的输入和输出分别接在电桥的2个对角线上,所以被称为 RC 桥式振荡电路。

  RC 桥式振荡电路的性能比 RC相移振荡电路好。它的稳定性高、非线性失真小,频率调节方便。它的振荡频率是:当 R1=R2=R 、 C1=C2=C 时 f0 = 1 2πRC 。它的频率范围从 1 赫~ 1 兆赫。

调幅和检波电路(终于到调幅和检波电路了噢~~~~)

  广播和无线电通信是利用调制技术把低频声音信号加到高频信号上发射出去的。在接收机中还原的过程叫解调。其中低频信号叫做调制信号,高频信号则叫载波。常见的连续波调制方法有调幅和调频2种,对应的解调方法就叫检波和鉴频。

 下面我们先介绍调幅和检波电路。

 ( 1 )调幅电路

  调幅是使载波信号的幅度随着调制信号的幅度变化,载波的频率和相位不变。能够完成调幅功能的电路就叫调幅电路或调幅器。

  调幅是1个非线性频率变换过程,所以它的关键是必须使用二极管、三极管等非线性器件。根据调制过程在哪个回路里进行可以把三极管调幅电路分成集电极调幅基极调幅发射极调幅3 种。下面举集电极调幅电路为例。

  图 6 是集电极调幅电路,由高频载波振荡器产生的等幅载波经 T1加到晶体管基极。低频调制信号则通过 T3 耦合到集电极中。 C1 、 C2 、 C3 是高频旁路电容, R1 、 R2是偏置电阻。集电极的 LC并联回路谐振在载波频率上。如果把三极管的静态工作点选在特性曲线的弯曲部分,三极管就是1个非线性器件。因为晶体管的集电极电流是随着调制电压变化的,所以集电极中的2 个信号就因非线性作用而实现了调幅。由于 LC 谐振回路是调谐在载波的基频上,因此在 T2 的次级就可得到调幅波输出。

 ( 2 )检波电路

  检波电路检波器的作用是从调幅波中取出低频信号。它的工作过程正好和调幅相反。检波过程也是1个频率变换过程,也要使用非线性元器件。常用的有二极管和三极管。另外为了取出低频有用信号,还必须使用滤波器滤除高频分量,所以检波电路通常包含非线性元器件和滤波器两部分。下面举二极管检波器为例说明它的工作。

  图 7 是1个二极管检波电路。 VD 是检波元件, C 和 R是低通滤波器。当输入的已调波信号较大时,二极管 VD 是断续工作的。正半周时,二极管导通,对 C充电;负半周和输入电压较小时,二极管截止, C 对 R 放电。在 R 两端得到的电压包含的频率成分很多,经过电容 C滤除了高频部分,再经过隔直流电容 C 0 的隔直流作用,在输出端就可得到还原的低频信号。

 调频和鉴频电路

  调频是使载波频率随调制信号的幅度变化,而振幅则保持不变。鉴频则是从调频波中解调出原来的低频信号,它的过程和调频正好相反。

 ( 1 )调频电路

  能够完成调频功能的电路就叫调频器调频电路。常用的调频方法是直接调频法,也就是用调制信号直接改变载波振荡器频率的方法。图8画出了它的大意,图中用1个可变电抗元件并联在谐振回路上。用低频调制信号控制可变电抗元件参数的变化,使载波振荡器的频率发生变化。

 ( 2 )鉴频电路

  能够完成鉴频功能的电路叫鉴频器鉴频电路,有时也叫频率检波器。鉴频的方法通常分二步,第1步先将等幅的调频波变成幅度随频率变化的调频— 调幅波,第二步再用一般的检波器检出幅度变化,还原成低频信号。常用的鉴频器有相位鉴频器、比例鉴频器等。

在电子电路中,电源、放大、振荡和调制电路被称为模拟电子电路,因为它们加工和处理的是连续变化的模拟信号。电子电路中另1大类电路的数字电子电路。它加工和处理的对象是不连续变化的数字信号。数字电子电路又可分成脉冲电路和数字逻辑电路,它们处理的都是不连续的脉冲信号。脉冲电路是专门用来产生电脉冲和对电脉冲进行放大、变换和整形的电路。家用电器中的定时器、报警器、电子开关、电子钟表、电子玩具以及电子医疗器具等,都要用到脉冲电路

  电脉冲有各式各样的形状,有矩形、三角形、锯齿形、钟形、阶梯形和尖顶形的,最具有代表性的是矩形脉冲。要说明1个矩形脉冲的特性可以用脉冲幅度Um 、脉冲周期 T 或频率 f 、脉冲前沿 t r 、脉冲后沿 t f 和脉冲宽度 t k 来表示。如果1个脉冲的宽度 t k =1/ 2T ,它就是1个方波。

  脉冲电路和放大振荡电路最大的不同点,或者说脉冲电路的特点是:脉冲电路中的晶体管是工作在开关状态的。大多数情况下,晶体管是工作在特性曲线的饱和区或截止区的,所以脉冲电路有时也叫开关电路。从所用的晶体管也可以看出来,在工作频率较高时都采用专用的开关管,如2AK 、 2CK 、DK 、 3AK 型管,只有在工作频率较低时才使用一般的晶体管。

  就拿脉冲电路中最常用的反相器电路(图 1)来说,从电路形式上看,它和放大电路中的共发射极电路很相似。在放大电路中,基极电阻 R b2是接到正电源上以取得基极偏压;而这个电路中,为了保证电路可靠地截止, R b2 是接到1个负电源上的,而且 R b1 和 R b2的数值是按晶体管能可靠地进入饱和区或截止区的要求计算出来的。不仅如此,为了使晶体管开关速度更快,在基极上还加有加速电容 C,在脉冲前沿产生正向尖脉冲可使晶体管快速进入导通并饱和;在脉冲后沿产生负向尖脉冲使晶体管快速进入截止状态。除了射极输出器是个特例,脉冲电路中的晶体管都是工作在开关状态的,这是1个特点。

  脉冲电路的另1个特点是一定有电容器(用电感较少)作关键元件,脉冲的产生、波形的变换都离不开电容器的充放电。

产生脉冲的多谐振荡器

  脉冲有各种各样的用途,有对电路起开关作用的控制脉冲,有起统帅全局作用的时钟脉冲,有做计数用的计数脉冲,有起触发启动作用的触发脉冲等等。不管是什么脉冲,都是由脉冲信号发生器产生的,而且大多是短形脉冲或以矩形脉冲为原型变换成的。因为矩形脉冲含有丰富的谐波,所以脉冲信号发生器也叫自激多谐振荡器或简称多谐振荡器。如果用门来作比喻,多谐振荡器输出端时开时闭的状态可以把多谐振荡器比作宾馆的自动旋转门,它不需要人去推动,总是不停地开门和关门。

 ( 1 )集基耦合多谐振荡器

  图 2 是1个典型的分立元件集基耦合多谐振荡器。它由2个晶体管反相器经 RC电路交叉耦合接成正反馈电路组成。2个电容器交替充放电使两管交替导通和截止,使电路不停地从1个状态自动翻转到另1个状态,形成自激振荡。从A 点或 B 点可得到输出脉冲。当 R b1 =R b2 =R , C b1 =C b2 =C 时,输出是幅度接近 E的方波,脉冲周期 T=1.4RC 。如果两边不对称,则输出是矩形脉冲

 ( 3 ) RC 环形振荡器

  图 4 是常用的 RC环形振荡器。它用奇数个门、首尾相连组成闭环形,环路中有 RC 延时电路。图中 RS 是保护电阻, R 和 C是延时电路元件,它们的数值决定脉冲周期。输出脉冲周期 T=2.2RC 。如果把 R换成电位器,就成为脉冲频率可调的多谐振荡器。因为这种电路简单可靠,使用方便,频率范围宽,可以从几赫变化到几兆赫,所以被广泛应用。

脉冲变换和整形电路

  脉冲在工作中有时需要变换波形或幅度,如把矩形脉冲变成三角波或尖脉冲等,具有这种功能的电路就叫变换电路。脉冲在传送中会造成失真,因此常常要对波形不好的脉冲进行修整,使它整旧如新,具有这种功能的电路就叫整形电路。

 ( 1 )微分电路

  微分电路是脉冲电路中最常用的波形变换电路,它和放大电路中的 RC耦合电路很相似,见图 5 。当电路时间常数 τ=RC<<t k时,输入矩形脉冲,由于电容器充放电极快,输出可得到一对尖脉冲。输入脉冲前沿则输出正向尖脉冲,输入脉冲后沿则输出负向尖脉冲。这种尖脉冲常被用作触发脉冲或计数脉冲。

 ( 2 )积分电路

  把图 5 中的 R 和 C 互换,并使τ=RC>>t k ,电路就成为积分电路,见图 6。当输入矩形脉冲时,由于电容器充放电很慢,输出得到的是一串幅度较低的近似三角形的脉冲波。

 ( 3 )限幅器

  能限制脉冲幅值的电路称为限幅器或削波器。图 7是用二极管和电阻组成的上限幅电路。它能把输入的正向脉冲削掉。如果把二极管反接,就成为削掉负脉冲的下限幅电路。

  用二极管或三极管等非线性器件可组成各种限幅器,或是变换波形(如把输入脉冲变成方波、梯形波、尖脉冲等),或是对脉冲整形(如把输入高低不平的脉冲系列削平成为整齐的脉冲系列等)。

 ( 4 )0………..

  能把脉冲电压维持在某个数值上而使波形保持不变的电路称为箝位器。它也是整形电路的1种。例如电视信号在传输过程会造成失真,为了使脉冲波形恢复原样,接收机里就要用箝位电路把波形顶部箝制在某个固定电平上。

  图 8 中反相器输出端上就有1个箝位二极管 VD 。如果没有这个二极管,输出脉冲高电平应该是 12伏,现在增加了箝位二极管,输出脉冲高电平被箝制在 3 伏上。

  此外,象反相器、射极输出器等电路也有“整旧如新”的作用,也可认为是整形电路。

  有记忆功能的双稳电路多谐振荡器的输出总是时高时低地变换,所以它也叫无稳态电路。另1种双稳态电路就绝然不同,双稳电路有2个输出端,它们总是处于相反的状态:1个是高电平,另1个必定是低电平。它的特点是如果没有外来的触发,输出状态能一直保持不变。所以常被用作寄存二进制数码的单元电路。

 ( 1 )集基耦合双稳电路

  图 9是用分立元件组成的集基耦合双稳电路。它由一对用电阻交叉耦合的反相器组成。它的2个管子总是一管截止一管饱和,例如当 VT1管饱和时 VT2 管就截止,这时 A 点是低电平 B点是高电平。如果没有外来的触发信号,它就保持这种状态不变。如把高电平表示数字信号“ 1 ”,低电平表示“ 0”,那么这时即可认为双稳电路已经把数字信号“ 1 ”寄存在 B 端了。

  电路的基极分别加有微分电路。如果在 VT1 基极加上1个负脉冲(称为触发脉冲),就会使 VT1基极电位下降,由于正反馈的作用,使 VT1 很快从饱和转入截止, VT2 从截止转入饱和。于是双稳电路翻转成 A 端为“ 1 ”, B端为“ 0 ”,并一直保持下去。

 ( 2 )触发脉冲的触发方式和极性

  双稳电路的触发电路形式和触发脉冲极性选择比较复杂。从触发方式看,因为有直流触发(电位触发)和交流触发(边沿触发)的分别,所以触发电路形式各有不同。从脉冲极性看,也是随着晶体管极性、触发脉冲加在哪个管子(饱和管还是截止管)上、哪个极上(基极还是集电极)而变化的。在实际应用中,因为微分电路能容易地得到尖脉冲,触发效果较好,所以都用交流触发方式。触发脉冲所加的位置多数是加在饱和管的基极上。所以使用NPN 管的双稳电路所加的是负脉冲,而 PNP 管双稳电路所加的是正脉冲。

 ( 3)集成触发器除了用分立元件外,也可以用集成门电路组成双稳电路。但实际上因为目前有大量的集成化双稳触发器产品可供选用,如R—S 触发器、 D 触发器、 J - K 触发器等等,所以一般不使用门电路搭成的双稳电路而直接选用现成产品。

有延时功能的单稳电路

  无稳电路有 2 个暂稳态而没有稳态,双稳电路则有 2 个稳态而没有暂稳态。脉冲电路中常用的第 三种电路叫单稳电路,它有1个稳态和1个暂稳态。如果也用门来作比喻,单稳电路可以看成是一扇弹簧门,平时它总是关着的,“关”是它的稳态。当有人推它或拉它时门就打开,但由于弹力作用,门很快又自动关上,恢复到原来的状态。所以“开”是它的暂稳态。单稳电路常被用作定时、延时控制以及整形等。

 ( 1 )集基耦合单稳电路

  图 10是1个典型的集基耦合单稳电路。它也是由两级反相器交叉耦合而成的正反馈电路。它的一半和多谐振荡器相似,另一半和双稳电路相似,再加它也有1个微分触发电路,所以可以想象出它是半个无稳电路和半个双稳电路凑合成的,它应该有1个稳态和1个暂稳态。平时它总是一管(VT1 )饱和,另一管( VT2)截止,这就是它的稳态。当输入1个触发脉冲后,电路便翻转到另1种状态,但这种状态只能维持不长的时间,很快它又恢复到原来的状态。电路暂稳态的时间是由延时元件R 和 C 的数值决定的: t t =0.7RC 。

 ( 2 )集成化单稳电路

  用集成门电路也可组成单稳电路。图 11 是微分型单稳电路,它用 2 个与非门交叉连接,门 1输出到门 2 是用微分电路耦合,门 2 输出到门 1 是直接耦合,触发脉冲加到门 1 的另1个输入端 U I。它的暂稳态时间即定时时间为: t t = ( 0.7 ~ 1.3 ) RC 。

脉冲电路的读图要点

  ①脉冲电路的特点是工作在开关状态,它的输入输出都是脉冲,因此分析时要抓住关键,把主次电路区分开,先认定主电路的功能,再分析辅助电路的作用。

  ②从电路结构上抓关键找异同。前面介绍了集基耦合方式的3种基本单元电路,它们都由双管反相器构成正反馈电路,这是它们的相同点。但细分析起来它们还是各有特点的:无稳和双稳电路虽然都有对称形式,但无稳电路是用电容耦合,双稳是用电阻直接耦合(有时并联有加速电容,容量一般都很小);而且双稳电路一般都有触发电路(双端或单端触发);单稳电路就很好认,它是不对称的,兼有双稳和单稳的形式。这样一分析,3种电路就很好区别了。

  ③ 脉冲电路中,脉冲的生成、变换和整形都和电容器的充、放电有关,电路的时间常数即 R 和 C的数值对确定电路的性质有极重要的意义,这一点尤为重要。

数字电子电路中的后起之秀是数字逻辑电路。把它叫做数字电路是因为电路中传递的虽然也是脉冲,但这些脉冲是用来表示二进制数码的,例如用高电平表示“1 ”,低电平表示“ 0”。声音图像文字等信息经过数字化处理后变成了一串串电脉冲,它们被称为数字信号。能处理数字信号的电路就称为数字电路

  这种电路同时又被叫做逻辑电路,那是因为电路中的“ 1 ”和“ 0”还具有逻辑意义,例如逻辑“ 1 ”和逻辑“ 0”可以分别表示电路的接通和断开、事件的是和否、逻辑推理的真和假等等。电路的输出和输入之间是1种逻辑关系。这种电路除了能进行二进制算术运算外还能完成逻辑运算和具有逻辑推理能力,所以才把它叫做逻辑电路。

  由于数字逻辑电路有易于集成、传输质量高、有运算和逻辑推理能力等优点,因此被广泛用于计算机、自动控制、通信、测量等领域。一般家电产品中,如定时器、告警器、控制器、电子钟表、电子玩具等都要用数字逻辑电路。

  数字逻辑电路的第1个特点是为了突出“逻辑”2个字,使用的是独特的图形符号。数字逻辑电路中有门电路和触发器2种基本单元电路,它们都是以晶体管和电阻等元件组成的,但在逻辑电路中我们只用几个简化了的图形符号去表示它们,而不画出它们的具体电路,也不管它们使用多高电压,是TTL 电路还是 CMOS电路等等。按逻辑功能要求把这些图形符号组合起来画成的图就是逻辑电路图,它完全不同于一般的放大振荡或脉冲电路图。

  数字电路中有关信息是包含在 0 和 1 的数字组合内的,所以只要电路能明显地区分开 0 和 1 ,0 和 1的组合关系没有破坏就行,脉冲波形的好坏我们是不大理会的。所以数字逻辑电路的第二个特点是我们主要关心它能完成什么样的逻辑功能,较少考虑它的电气参数性能等问题。也因为这个原因,数字逻辑电路中使用了一些特殊的表达方法如真值表、特征方程等,还使用一些特殊的分析工具如逻辑代数、卡诺图等等,这些也都与放大振荡电路不同。

门电路和触发器

 ( 1 )门电路

  门电路可以看成是数字逻辑电路中最简单的元件。目前有大量集成化产品可供选用。

  最基本的门电路有 3 种:非门、与门和或门。非门就是反相器,它把输入的 0 信号变成 1 , 1变成 0 。这种逻辑功能叫“非”,如果输入是 A ,输出写成 P=A 。与门有 2 个以上输入,它的功能是当输入都是 1 时,输出才是1 。这种功能也叫逻辑乘,如果输入是 A 、 B ,输出写成 P=A·B 。或门也有 2 个以上输入,它的功能是输入有1个 1时,输出就是 1 。这种功能也叫逻辑加,输出就写成 P=A + B 。

  把这3种基本门电路组合起来可以得到各种复合门电路,如与门加非门成与非门,或门加非门成或非门。图 1是它们的图形符号和真值表。此外还有与或非门、异或门等等。

  数字集成电路有 TTL 、 HTL 、 CMOS等多种,所用的电源电压和极性也不同,但只要它们有相同的逻辑功能,就用相同的逻辑符号。而且一般都规定高电平为 1 、低电平为 0。

 ( 2 )触发器

  触发器实际上就是脉冲电路中的双稳电路,它的电路和功能都比门电路复杂,它也可看成是数字逻辑电路中的元件。目前也已有集成化产品可供选用。常用的触发器有D 触发器J—K 触发器

  D 触发器有1个输入端 D 和1个时钟信号输入端 CP ,为了区别在 CP端加有箭头。它有2个输出端,1个是 Q 1个是 Q ,加有小圈的输出端是 Q 端。另外它还有2个预置端 R D 和 S D,平时正常工作时要 R D 和 S D 端都加高电平 1 ,如果使 R D =0 ( S D 仍为 1 ),则触发器被置成 Q=0;如果使 S D =0 ( R D =1 ),则被置成 Q=1 。因此 R D 端称为置 0 端, S D 端称为置 1 端。 D触发器的逻辑符号见图 2 ,图中 Q 、 D 、 SD 端画在同一侧; Q 、R D 画在另一侧。 R D 和 S D都带小圆圈,表示要加上低电平才有效。

  D 触发器是受 CP 和 D 端双重控制的, CP 加高电平 1 时,它的输出和 D的状态相同。如 D=0 , CP 来到后, Q=0 ;如 D=1 , CP 来到后, Q=1 。 CP 脉冲起控制开门作用,如果CP=0 ,则不管 D 是什么状态,触发器都维持原来状态不变。这样的逻辑功能画成表格就称为功能表或特性表,见图 2 。表中 Q n+1表示加上触发信号后变成的状态, Qn 是原来的状态。“ X ”表示是 0 或 1 的任意状态。

  有的 D 触发器有几个 D 输入端: D 1 、 D 2 … 它们之间是逻辑与的关系,也就是只有当D 1 、 D 2 … 都是 1 时,输出端 Q 才是 1 。

  另1种性能更完善的触发器叫 J - K 触发器。它有2个输入端: J端和 K 端,1个 CP 端,2个预置端: R D 端和 S D 端,以及2个输出端: Q 和 Q 端。它的逻辑符号见图 3 。 J- K 触发器是在 CP 脉冲的下阵沿触发翻转的,所以在 CP 端画1个小圆圈以示区别。图中, J 、 S D 、 Q 画在同一侧,K 、 R D 、 Q 画在另一侧。

  J - K 触发器的逻辑功能见图 3 。有 CP 脉冲时(即 CP=1 ): J 、 K 都为 0,触发器状态不变; Q n + 1 =Qn , J = 0 、 K=1 ,触发器被置 0 : Q n + 1 =0 ; J=1 、K=0 , Q n+1 =1 ; J=1 、 K=1 ,触发器翻转一下: Q n + 1 =Qn 。如果不加时钟脉冲,即 CP=0时,不管 J 、 K 端是什么状态,触发器都维持原来状态不变: Q n + 1 =Qn 。有的 J—K 触发器同时有好几个 J 端和K 端, J 1 、 J 2 … 和 K 1 、 K 2 … 之间都是逻辑与的关系。有的 J - K 触发器是在 CP的上升沿触发翻转的,这时它的逻辑符号图的 CP 端就不带小圆圈。也有时候为了使图更简洁,常常把 R D 和 S D端省略不画。

  能够把数字、字母变换成二进制数码的电路称为编码器。反过来能把二进制数码还原成数字、字母的电路就称为译码器

 ( 1 )编码器

  图 4 ( a )是1个能把十进制数变成二进制码的编码器。1个十进制数被表示成二进制码必须 4位,常用的码是使从低到高的每一位二进制码相当于

十进制数的 1 、 2 、 4 、 8 ,这种码称为 8 - 4 - 2 - 1 码或简称 BCD码。所以这种编码器就称为“ 10 线 -4 线编码器”或“ DEC / BCD 编码器”。

  从图看到,它是由与非门组成的。有 10 个输入端,用按键控制,平时按键悬空相当于接高电平 1。它有 4 个输出端 ABCD ,输出 8421 码。如果按下“ 1 ”键,与“ 1 ”键对应的线被接地,等于输入低电平 0 、于是门D 输出为 1 ,整个输出成 0001 。

  如按下“ 7 ”键,则 B 门、 C 门、 D 门输出为 1 ,整个输出成 0111。如果把这些电路都做在1个集成片内,便得到集成化的 10 线 4 线编码器,它的逻辑符号见图 4 ( b )。左侧有 十个输入端,带小圆圈表示要用低电平,右侧有 4 个输出端,从上到下按从低到高排列。使用时可以直接选用。

 ( 2 )译码器

  要把二进制码还原成十进制数就要用译码器。它也是由门电路组成的,现在也有集成化产品供选用。图 5 是1个 4 线—10 线译码器。它的左侧为 4 个二进制码的输入端,右侧有 10 个输出端,从上到下按 0 、 1 、 …9 排列表示 十个十进制数。输出端带小圆圈表示低电平有效。平时 10 个输出端都是高电平 1 ,如输入为 1001 码,输出“ 9 ”端为低电平 0,其余 9 根线仍为高电平 1 ,这表示“ 9 ”线被译中。

二极管,如每段都接低电平 0 ,七段都被点亮,显示出数字“ 8 ”;如 b 、 c 段接低电平 0,其余都接 1 ,显示的是“ 1 ”。可见要把十进制数用七段显示管显示出来还要经过一次译码。如果使用“ 4 线 —7线译码器”和显示管配合使用,就很简单,输入二进制码可直接显示十进制数,见图 6 。译码器左侧有 4 个二进制码的输入端,右侧有 七个输出可直接和数码管相连。左上侧另有1个灭灯控制端 I B ,正常工作时应加高电平 1 ,如不需要这位数字显示就在 I B 上加低电平0 ,就可使这位数字熄灭。

  如果要想把十进制数显示出来,就要使用数码管。现以共阳极发光二极管( LED)七段数码显示管为例,见图 6 。它有七段发光

寄存器和移位寄存器

 ( 1 )寄存器

  能够把二进制数码存贮起来的的部件叫数码寄存器,简称寄存器。图 7 是用4 个 D 触发器组成的寄存器,它能存贮 4 位二进制数。 4 个 CP 端连在一起作为控制端,只有 CP=1 时它才接收和存贮数码。4 个 R D 端连在一起成为整个寄存器的清零端。如果要存贮二进制码 1001 ,只要把它们分别加到触发器 D 端,当 CP 来到后4 个触发器从高到低分别被置成 1 、 0 、 0 、 1 ,并一直保持到下一次输入数据之前。要想取出这串数码可以从触发器的 Q端取出。

 ( 2 )移位寄存器

  有移位功能的寄存器叫移位寄存器,它可以是左移的、右移的,也可是双向移位的。

  图 8 是1个能把数码逐位左移的寄存器。它和一般寄存器不同的是:数码是逐位串行输入并加在最低位的D 端,然后把低位的 Q 端连到高一位的 D 端。这时 CP 称为移位脉冲。

  先从 R D 端送低电平清零,使寄存器成 0000 状态。假定要输入的数码是 1001,输入的次序是先高后低逐位输入。第 1 个 CP 后, 1 被打入第 1 个触发器,寄存器成 0001 ;第 2 个 CP 后, Qo的 1 被移入 Q 1 ,新的 0 打入 D 1 ,成为 0010 ;第 3 个 CP 后,成为 0100 ;第 4 个 CP后,成为 1001 。

  可见经过 4 个 CP ,寄存器就寄存了 4 位二进制码 1001。目前已有品种繁多的集成化寄存器供选用。

计数器和分频器

 ( 1 )计数器

  能对脉冲进行计数的部件叫计数器。计数器品种繁多,有作累加计数的称为加法计数器,有作递减计数的称为减法计数器;按触发器翻转来分又有同步计数器和异步计数器;按数制来分又有二进制计数器、十进制计数器和其它进位制的计数器等等。

  现举1个最简单的加法计数器为例,见图 9 。它是1个 16 进制计数器,最大计数值是 1111,相当于十进制数 15 。需要计数的脉冲加到最低位触发器的 CP 端上,所有的 J 、 K 端都接高电平 1 ,各触发器 Q端接到相邻高一位触发器的 CP 端上。 J—K 触发器的特性表告诉我们:当 J=1 、 K=1 时来1个 CP,触发器便翻转一次。在全部清零后, ① 第 1 个 CP 后沿,触发器 C0 翻转成 Q0=1 ,其余 3 个触发器仍保持 0态,整个计数器的状态是 0001 。 ② 第 2 个 CP 后沿,触发器 C0 又翻转成“ Q0=0 , C1 翻转成 Q1=1,计数器成 0010 。 …… 到第 15 个 CP 后沿,计数器成 1111 。可见这个计数器确实能对 CP 脉冲计数。

 ( 2 )分频器

  计数器的第1个触发器是每隔 2 个 CP 送出1个进位脉冲,所以每个触发器就是1个 2分频的分频器, 16 进制计数器就是1个 16 分频的分频器。

  为了提高电子钟表的精确度,普遍采用的方法是用晶体

生 32768 赫标准信号脉冲,经过 15 级 2 分频处理得到 1赫的秒信号。因为晶体振荡器的准确度和稳定度很高,所以得到的秒脉冲信号也是精确可靠的。把它们做到1个集成片上便是电子手表专用集成电路产品,见图10 。

数字逻辑电路读图要点和举例

  数字逻辑电路的读图步骤和其它电路是相同的,只是在进行电路分析时处处要用逻辑分析的方法。读图时要:① 先大致了解电路的用途和性能。

② 找出输入端、输出端和关键部件,区分开各种信号并弄清信号的流向。

③ 逐级分析输出与输入的逻辑关系,了解各部分的逻辑功能。

④ 最后统观全局得出分析结果。

  例 1 三路抢答器

  图 11 是智力竞赛用的三路抢答器电路。裁判按下开关 SA4,触发器全部被置零,进入准备状态。这时 Q1 ~ Q3 均为 1 ,抢答灯不亮;门 1 和门 2 输出为 0 ,门 3 和门 4组成的音频振荡器不振荡,扬声器无声。

  竞赛开始,假定 1 号台抢先按下 SA1 ,触发器 C1 翻转成 Q1=1 、 Q1=0 。于是:① 门 2 输出为 1 ,振荡器振荡,扬声器发声; ②HL1 灯点亮; ③ 门 1 输出为 1 ,这时 2 号、 3号台再按开关也不起作用。裁判宣布竞赛结果后,再按一下 SA4 ,电路又进入准备状态。

 例 2 彩灯追逐电路

  图 12 是 4 位移位寄存器控制的彩灯电路。开始时按下 SA ,触发器 C1 ~ C4 被置成1000 ,彩灯 HL1 被点亮。 CP 脉冲来到后,寄存器移 1 位,触发器 C1 ~ C4 成 0100 ,彩灯 HL2 点亮。第2 个 CP 脉冲点亮 HL3 ,第 3 个点亮 HL4 ,第 4 个 CP 又把触发器 C1 ~ C4 置成 1000 ,又点亮HL1 。如此循环往复,彩灯不停闪烁。只要增加触发器可使灯数增加,改变 CP 的频率可变化速度。

555 集成电路开始出现时是作定时器应用的,所以叫做 555 定时器或555时基电路。但是后来经过开发,它除了作定时延时控制外,还可以用于调光、调温、调压、调速等多种控制以及计量检测等作用;还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,作为交流信号源以及完成电源变换、频率变换、脉冲调制等用途。由于它工作可靠、使用方便、价格低廉,因此目前被广泛用于各种小家电中。

  555集成电路内部有几10个元器件,有分压器、比较器、触发器、输出管和放电管等,电路比较复杂,是模拟电路和数字电路的混合体。它的性能和参数要在非线性模拟集成电路手册中才能查到。555 集成电路是 8 脚封装,图 1 ( a )是双列直插型封装,按输入输出的排列可画成图 1 ( b )。   其中 6脚称阀值端( TH ),是上比较器的输入。 2 脚称触发端( ),是下比较器的输入。 3 脚是输出端( V O ),它有 0 和 12种状态,它的状态是由输入端(www.t262.com]所加的电平决定的。 7 脚的放电端( DIS),它是内部放电管的输出,它也有悬空和接地2种状态,也是由输入端的状态决定的。 4 脚是复位端( ),加上低电砰(< 0.3伏)时可使输出成低电平。 5 脚称控制电压端( V C ),可以用它改变上下触发电平值。 8 脚是电源, 1 脚为地端。

  对于初学者来说,可以把 555 电路等效成1个带放电开关的 R - S 触发器,如图 2 ( a)。这个特殊的触发器有2个输入端;阈值端( TH )可看成是置零端 R ,要求高电平;触发端( )可看成是置位端 ,低电平有效。它只有1 个输出端 V O , V O 可等效成触发器的 Q 端。放电端( DIS)可看成由内部的放电开关控制的1个接点,放电开关由触发器的 Q 端控制: =1 时 DIS 端接地; =0 时 DIS端悬空。此外这个触发器还有复位端 ,控制电压端 V C ,电源端 V DD 和地端 GND 。

这个特殊的 R - S 触发器有 2 个特点:( 1 )2个输入端的触发电平要求一高一低:置零端 R 即阈值端 TH要求高电平,而置低端 即触发端 则要求低电平。( 2 )2个输入端的触发电平,也就是使它们翻转的阈值电压值也不同,当 V C端不接控制电压时,对 TH ( R )端来讲, > 2 /3 V DD 是高电平 1 ,< 2 /3 V DD 是低电平 0 ;而对 ( )端来讲,> 1/ 3 V DD 是高电平 1 ,<1 /3 V DD 是低电平 0 。如果在控制端( V C )加上控制电压 V C ,这时上触发电平就变成 V C值,而下触发电平则变成 1 /2 V C 。可见改变控制端的控制电压值可以改变上下触发电平值。

  经过简化, 555 电路可以等效成1个触发器,它的功能表见图 2 ( b )。

  555 集成电路有双极型和 CMOS 型2种。 CMOS型的优点是功耗低、电源电压低、输入阻抗高,但输出功率较小,输出驱动电流只有几毫安。双极型的优点是输出功率大,驱动电流达 200毫安,其它指标则不如 CMOS 型的。

  此外还有1种 556 双时基电路, 14 脚封装,内部包含有2个相同的时基电路单元。 555的应用电路很多,大体上可分为 555 单稳、 555 双稳和 555 无稳3类。 555 单稳电路单稳电路有1个稳态和1个暂稳态。555 的单稳电路是利用电容的充放电形成暂稳态的,因此它的输入端都带有定时电阻和定时电容,常见的 555 单稳电路有2种。

 ( 1 )人工启动型单稳

  将 555 电路的 6 、 2 端并接起来接在 RC 定时电路上,在定时电容 C T两端接按钮开关 SB ,就成为人工启动型 555 单稳电路,见图 3 ( a )。用等效触发器替代 555,并略去与单稳工作无关的部分后画成等效图 3 ( b )。下面分析它的工作:

  ① 稳态:接上电源后,电容 C T 很快充到 V DD ,从图 3 ( b )看到,触发器输入R=1 , =1 ,从功能表查到输出 V o =0 ,这是它的稳态。

 ② 暂稳态:按下开关 SB , C T 上电荷很快放到零,相当于触发器输入 R=0 , =0,输出立即翻转成 V o =1 ,暂稳态开始。开关放开后,电源又向 C T 充电,经时间 t d 后, C T 上电压升到> 2 /3 V DD 时,输出又翻转成 V =0 ,暂稳态结束。 t d就是单稳电路的定时时间或延时时间,它和定时电阻 R T 和定时电容 C T 的值有关; t d=1.1R T C T 。

 ( 2 )脉冲启动型单稳

  把 555 电路的 6 、 7 端并接起来接到定时电容 C T 上,用 2端作输入就成为脉冲启动型单稳电路,见图 4 ( a )。电路的 2端平时接高电平,当输入接低电平或输入负脉冲时才启动电路。用等效触发器替代 555 电路后可画成图 4 ( b)。这个电路利用放电端使定时电容能快速放电。下面分析它的工作状态:

 ① 稳态:通电后, R=1 , =1 ,输出 V o =0 , DIS 端接地, C T 上电压为0 即 R=0 ,输出仍保持 V o =0 ,这是它的稳态。

 ② 暂稳态:输入负脉冲后,输入 =0 ,输出翻转成 V o =1 , DIS 端开路,电源通过 RT 向 C T 充电,暂稳态开始。经过 t d 后, C T 上电压升到> 2 /3 V DD ,这时负脉冲已经消失,输入又成为R=1 , =1 ,输出又翻转成 V o =0 ,暂稳态结束。这时内部放电开关接通, DIS 端接地, C T上电荷很快放到零,为下一次定时控制作准备。电路的定时时间 t d =1.1R T C T 。

  这2种单稳电路常用作定时延时控制。

555 双稳电路

  常见的 555 双稳电路有2种。

 ( 1 ) R-S 触发器型双稳

把 555 电路的 6 、 2 端作为2个控制输入端, 7 端不用,就成为1个 R - S触发器。要注意的是2个输入端的电平要求和阈值电压都不同,见图 5 ( a)。有时可能只有1个控制端,这时另1个控制端要设法接死,根据电路要求可以把 R 端接到电源端,见图 5 ( b ),也可以把 S端接地,用 R 端作输入。

  有2个输入端的双稳电路常用作电机调速、电源上下限告警等用途,有1个输入端的双稳电路常作为单端比较器用作各种检测电路。

 ( 2 )施密特触发器型双稳

把 555 电路的 6 、 2 端并接起来成为只有1个输入端的触发器,见图 6 ( a)。这个触发器因为输出电压和输入电压的关系是1个长方形的回线形,见图 6 ( b ),所以被称为施密特触发器。从曲线看到,当输入 Vi =0 时输出 V o =1 。当输入电压从 0 上升时,要升到> 2/ 3 V DD 以后, V o 才翻转成 0。而当输入电压从最高值下降时,要降到 < 1 /3 V DD 以后, V o 才翻转成 1。所以输出电压和输入电压之间是1个回线形曲线。由于它的输入有2个不同的阈值电压,所以这种电路被用作电子开关,各种控制电路,波形变换和整形的用途。

555 无稳电路

  无稳电路有 两个暂稳态,它不需要外触发就能自动从1种暂稳态翻转到另1种暂稳态,它的输出是一串矩形脉冲,所以它又叫为自激多谐振荡器或脉冲振荡器。555 的无稳电路有多种,这里介绍常用的 3 种。

 ( 1 )直接反馈型 555 无稳

  利用 555 施密特触发器的回滞特性,在它的输入端接电容 C ,再在输出 V 0与输入之间接1个反馈电阻 R f ,就能组成直接反馈型多谐振荡器,见图 7 ( a )。用等效触发器替代 555 电路后可画成图 7( b )。现在来看看它的振荡工作原理:

 刚接通电源时, C 上电压为零,输出 V 0 =1 。通电后电源经内部电阻、 V 0 端、 Rf 向 C 充电,当 C 上电压升到> 2 /3 V DD 时,触发器翻转 V 0 =0 ,于是 C 上电荷通过 R f 和 V 0放电入地。当 C 上电压降到< 1 /3 V DD 时,触发器又翻转成 V 0 =1 。电源又向 C充电,不断重复上述过程。由于施密特触发器有 2 个不同的阀值电压,因此 C 就在这 两个阀值电压之间交替地充电和放电,输出得到的是一串连续的矩形脉冲,见图 7 ( c )。脉冲频率约为 f=0.722 / R f C。

 ( 2 )间接反馈型无稳

  另一路多谐振荡器是把反馈电阻接在放电端和电源上,如图 8 ( a),这样做使振荡电路和输出电路分开,可以使负载能力加大,频率更稳定。这是目前使用最多的 555 振荡电路。

  这个电路在刚通电时, V 0 =1 , DIS 端开路, C 的充电路径是:电源 →R A→DIS→R B →C ,当 C 上电压上升到> 2 /3 V DD 时, V 0 =1 , DIS 端接地, C 放电, C放电的路径是: C→R B →DIS→ 地。可以看到充电和放电时间常数不等,输出不是方波。 t 1 =0.693 ( R A + BB ) C 、 t 2 =0.693R B C ,脉冲频率 f=1.443 /( R A + 2R ) C

 ( 3 ) 555 方波振荡电路

  要想得到方波输出,可以用图 9 的电路。它是在图 8 的电路基础上在 R B 两端并联1个二极管VD 组成的。当 R A =R B 时, C 的充放电时间常数相等,输出就得到方波。方波的频率为 f=0.722 / R A C (R A =R B )

二极管的方法可以得到占空比可调的脉冲振荡电路。

  在这个电路的基础上,在 R A 和 R B 回路内增加电位器以及采用串联或并联

  555脉冲振荡电路常被用作交流信号源,它的振荡频率范围大致在零点几赫到几兆赫之间。因为电路简单可靠,所以使用极广。

555 电路读图要点及举例

  555集成电路经多年的开发,实用电路多达几10种,几乎遍及各个技术领域。但对初学者来讲,常见的电路也不过是上述几种,因此在读图时,只要抓住关键,识别它们是不难的。

  从电路结构上分析,3类 555 电路的区别或者说它们的结构特点主要在输入端。因此当我们拿到一张555 电路图时,在大致了解电路的用途之后,先看一下电路是 CMOS 型还是双极型,再看复位端( )和控制电压端( V c)的接法,如果复位端( )是接高电平、控制电压端( V c )是接1个抗干扰电容的
那即可按以下的次序先从输入端开始进行分析:

 ( 1 ) 6 、 2 端是分开的

  ①7端悬空不用的一定是双稳电路。如有2个输入的则是双限比较器;如只有1个输入的则是单端比较器。这类电路一般都是作电子开关、控制和检测电路的用途。

  ②7 、 6 端短接并接有电阻电容、取 2端作输入的一定是单稳电路。它的输入可以用开关人工启动,也可以用输入脉冲启动,甚至为了取得较好的启动效果在输入端带有 RC微分电路。这类电路一般用作定时延时控制和检测的用途。

 ( 2 ) 6 、 2 端短接的

 ① 输入没有电容的是施密特触发器电路。这类电路常用作电子开关、告警、检测和整形的用途。

 ② 输入端有电阻电容而 7 端悬空的,这时要看电阻电容的接法:( a ) R 和 C串联接在电源和地之间的是单稳电路, R 和 C 就是它的定时电阻和定时电容。( b ) R 在上 C 在下, R 的一端接在 V 0端上的是直接反馈型无稳电路,这时 R 和 C 就是决定振荡频率的元件。

 ③7 端也接在输入端,成“ R A - 7 - R B - 6 、 2—C”的形式的就是最常用的无稳电路。这时 R A 和 R B 及 C 就是决定振荡频率的元件。这类电路可以有很多种变型:如省去 R A,把 7 端接在 V 0 上;或者在 R B 两端并联二极管 VD 以获得方波输出,或者用电阻和电位器组成 R A 和 R B,而且在 R A 和 R B两端并联有二极管以获得占空比可调的脉冲波等等。这类电路是用途最广的,常用于脉冲振荡、音响告警、家电控制、电子玩具、医疗电器以及电源变换等用途。

 ( 3 )如果控制电压( V c)端接有直流电压,则只是改变了上下2个阀值电压的数值,其它分析方法仍和上面的相同。

  只要按上述步骤细心分析核对,一定能很快地识别 555电路的类别和了解它的工作原理。下面的问题就比较好办了,例如定时时间、振荡频率等都可以按给出的公式进行估算。

 例 1 相片曝光定时器

  图 10 是用 555 电路制成的相片曝光定时器。从图看到,输入端 6 、 2 并接在 RC串联电路中,所以这是1个单稳电路, R1 和 RP 是定时电阻, C1 是定时电容。

  电路在通电后, C1 上电压被充到 6 伏,输出 V 0 =0 ,继电器 KA不吸动,常开接点是打开的,曝光灯 HL 不亮。这是它的稳态。

  按下 SB 后, C1 快速放电到零,输出 V 0 =1 ,继电器 K

A 吸动,点亮曝光灯 HL ,暂稳态开始。 SB 放开后电源向 C1 充电,当 C1 上电压升到 4伏时,暂稳态结束,定时时间到,电路恢复到稳态。输出翻转成 V 0 =0 ,继电器 KA 释放,曝光灯熄灭。电路定时时间是可调的,大约是1 秒~ 2 分钟。

 例 2 光电告警电路

  图 11 是 555 光电告警电路。它使用 556 双时基集成电路,有2个独立的 555电路。前1个接成施密特触发器,后1个是间接反馈型无稳电路。图中引脚号码是 556 的引脚号码。

三极管 VT 导通, VT 的集电极电压只有 0.3 伏,加在 555b 的复位端( MR ),使555b 处于复位状态,即无振荡输出。

  图中 R1 是光敏电阻,无光照时阻值为几~几十兆欧,所以 555a 的输入相当于 R=0 、S=0 ,输出 V 0 =1 ,

  当 R1 受光照后,阻值突然下降到只有几~几十千欧,于是 555a的输入电压升到上阀值电压以上,输出翻转成 V 0 =0 , VT 截止, VT 集电极电压升高, 555b被解除复位状态而振荡,于是扬声器 BL 发声告警。 555b 的振荡频率大约是 1 千赫。

  如果把整个装置放入公文包内,那么当打开公文包时,这个装置会发声告警而成为防盗告警装置

电路不可怕,可怕的是自己没有信心!

Come on 龙旗~

篇二 : 电脑电源工作原理及维修详解

电脑电源维修教程

开始我们要知道计算机开关电源的工作原理。[www.t262.com]电源先将高电压交流电(220V)通过全桥二极管整流以后成为高电压的脉冲直流电,再经过电容滤波以后成为高压直流电。

此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,因为电源输入部分工作在高电压、大电流的状态下,故障率最高;还有就是输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。通过对多台电源的维修,总结出了对付电源常见故障的方法。

一、在断电情况下,“望、闻、问、切”

由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。 用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管VT1、VT2击穿。

然后检查直流输出部分。脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。

二、加电检测

在通过上述检查后,就可通电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。一般来讲应重点检查一下电源的输入端,开关三极管,电源保护电路以及电源的输出电压电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量TL494的4脚电压,正常值应为0.4V以下,若测得电压值为+4V以上,则说明电源的处于保护状态下,应重点检查产生保护的原因。由于接触到高电压,建议没有电子基础的朋友要小心操作。

计算机电源维修 电脑电源工作原理及维修详解

三、常见故障

1.保险丝熔断

一般情况下,保险丝熔断说明电源的内部线路有问题。[www.t262.com]由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这些元器件有无击穿、开路、损坏等。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出。如果没有发现上述情况,则用万用表进行测量,如果测量出来两个大功率开关管e、 c极间的阻值小于100kΩ,说明开关管损坏。其次测量输入端的电阻值,若小于200kΩ,说明后端有局部短路现象。

2.无直流电压输出或电压输出不稳定

如果保险丝是完好的,可是在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。这时,首先用万用表测量系统板+5V电源的对地电阻,若大于0.8Ω,则说明电路板无短路现象;然后将电脑中不必要的硬件暂时拆除,如硬盘、光盘驱动器等,只留下主板、电源、蜂鸣器,然后再测量各输出端的直流电压,如果这时输出为零,则可以肯定是电源的控制电路出了故障。

3.电源负载能力差

电源负开能力差是一个常见的故障,一般都是出现在老式或是工作时间长的电源中,主要原因是各元器件老化,开关三极管的工作不稳定,没有及时进行散热等。应重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏、晶体管工作点未选择好等。

4、通电无电压输出,电源内发出吱吱声。

这是电源过载或无负载的典型特征。先仔细检查各个元件,重点检查整流二极管、开关管等。经过仔细检查,发现一个整流二极管1N4001的表面已烧黑,而且电路板也给烧黑了。找同型号的二极管换下,用万用表一量果然是击穿的。接上电源,可风扇不转,吱吱声依然。用万用表量+12V输出只有+0.2V,+5V只有0.1V。这说明元件被击穿时电源启动自保护。测量初级和次级开关管,发现初级开关管中有一个已损坏,用相同型号的开关管换上,故障排除,一切正常。

5、没有吱吱声,上一个保险丝就烧一个保险丝。

由于保险丝不断地熔断,搜索范围就缩小了。可能性只有3个:1、整流桥击穿;2、大电解电容击穿;3、初级开关管击穿。电源的整流桥一般是分立的四个整流二极管,或是将四个二极管固化在一起。将整流桥拆下一量是正常的。大

计算机电源维修 电脑电源工作原理及维修详解

电解电容拆下测试后也正常,注意焊回时要注意正负极。[www.t262.com]最后的可能就只剩开关管了。这个电源的初级只有一个大功率的开关管。拆下一量果然击穿,找同型号开关管换上,问题解决。

其实,维修电源并不难,一般电源损坏都可以归结为保险丝熔断、整流二极管损坏、滤波电容开路或击穿、开关三极管击穿以及电源自保护等,因开关电源的电路较简单,故障类型少,很容易判断出故障位置。只要有足够的电子基础知识,多看看相关报刊,多动动手,平时注意经验的积累,电源故障是可以轻松检修的。

ATX微机开关电源维修教程1

微机ATX电源电路的工作原理与维修

随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。本文以市面上最常见的LWT2005型开关电源供应器为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也借此起到一个抛砖引玉的作用。

一、 概述

ATX开关电源的主要功能是向计算机系统提供所需的直流电源。一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。其外观图和内部结构实物图见图1和图2所示。

计算机电源维修 电脑电源工作原理及维修详解

ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V(0.5A)、+12V(10A)、—12V(1A)、+3.3V(14A)、+5VSB(0.8A)。[www.t262.com)为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。

二、工作原理

ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。参照实物绘出整机电路图,如图3所示。

1、输入整流滤波电路

只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。R2和R3为隔离平衡电阻,在电路中对C5和C6起平均分配电压作用,且在关机后,与地形成回路,快速泄放C5、C6上储存的电荷,从而避免电击。

2、高压尖峰吸收电路

如图5所示,D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。

3、辅助电源电路

计算机电源维修 电脑电源工作原理及维修详解

如图6所示,整流器输出的+300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。(www.t262.com]Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50、C04整流滤波后,一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势开始下降,最终使T3③~④反馈绕组感应电动势反相(上负下正),并与C02电压叠加后送往Q03的b极,使b极电位变负,此时开关管Q03因b极无启动电流而迅速截止。

开关管Q03截止时,T3③~④反馈绕组、D7、R01、R02、R03、R04、R05、C09、IC3、IC4组成再起振支路。当Q03导通的过程中,T3初级绕组将磁能转化为电能为电路中各元器件提供电压,同时T3反馈绕组的④端感应出负电压,D7导通、Q1截止;当Q03截止后,T3反馈绕组的④端感应出正电压,D7截止,T3次级绕组两个输出端的感应电动势为正,T3储存的磁能转化为电能经D50、C04整流滤波后为IC4提供一个变化的电压,使IC3的①、②脚导通,IC3内发光二极管流过的电流增大,使光敏三极管发光,从而使Q1导通,给开关管Q03的b极提供启动电流,使开关管Q03由截止转为导通。同时,正反馈支路C02的充电电压经T3反馈绕组、R003、Q03的be极等效电阻、R06形成放电回路。随着C41充电电流逐渐减小,开关管Q03的Ub电位上升,当Ub电位增加到Q03的be极的开启电压时,Q03再次导通,又进入下一个周期的振荡。如此循环往复,构成一个自激多谐振荡器。

Q03饱和期间,T3次级绕组输出端的感应电动势为负,整流二级管D9和D50截止,流经初级绕组的导通电流以磁能的形式储存在辅助电源变压器T3中。当Q03由饱和转向截止时,次级绕组两个输出端的感应电动势为正,T3储存的磁能转化为电能经D9、D50整流输出。其中D50整流输出电压经三端稳压器7805稳压,再经电感L7滤波后输出+5VSB。若该电压丢失,主板就不会自动唤醒ATX电源工作。D9整流输出电压供给IC2(脉宽调制集成电路KA7500B)的12脚(电源输入端),经IC2内部稳压,从第14脚输出稳压+5V,提供ATX开关电源控制电路中相关元器件的工作电压。

T2为主电源激励变压器,当副电源开关管Q03导通时,Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),并作用于T2初级②~③绕组,产生感应电动势(上负下正),经D5、D6、C8、R5给Q02的b极提供启动电流,使主电源开关管Q02导通,在回路中产生电流,保证了整个电路的正常工作;同时,在T2初级①~④反馈绕组产生感应电动势(上正下负),D3、D4截止,主电源开关管Q01处于截止状态。在电源开关管Q03截止期间,工作原

计算机电源维修 电脑电源工作原理及维修详解

理与上述过程相反,即Q02截止,Q01工作。(www.t262.com]其中,D1、D2为续流二极管,在开关管Q01和Q02处于截止和导通期间能提供持续的电流。这样就形成了主开关电源它激式多谐振电路,保证了T2初级绕组电路部分得以正常工作,从而在T2次级绕组上产生感应电动势送至推动三极管Q3、Q4的c极,保证整个激励电路能持续稳定地工作,同时,又通过T2初级绕组反作用于T1主开关电源变压器,使主电源电路开始工作,为负载提供+3.3V、±5V、±12V工作电压。 ATX微机开关电源维修教程2

4、PS信号和PG信号产生电路以及脉宽调制控制电路

如图7所示,微机通电后,由主板送来的PS信号控制IC2的④脚(脉宽调制控制端)电压。待机时,主板启动控制电路的电子开关断开,PS信号输出高电平

3.6V,经R37到达IC1(电压比较器LM339N)的⑥脚(启动端),由内部经IC1的①脚输出低电平,使D35、D36截止;同时,IC1的②脚一路经R42送出一个比较电压对C35进行充电,另一路经R41送出一个比较电压给IC2的④脚,IC2的④脚电压由零电位开始逐渐上升,当上升的电压超过3V时,关闭IC2⑧、11脚的调制脉宽电压输出,使T2推动变压器、T1主电源开关变压器停振,从而停止提供+3.3V、±5V、±12V等各路输出电压,电源处于待机状态。受控启动后,PS信号由主板启动控制电路的电子开关接地,IC1的⑥脚为低电平(0V),IC2的④脚变为低电平(0V),此时允许⑧、11脚输出脉宽调制信号。IC2的13脚(输出方式控制端)接稳压+5V (由IC2内部14脚稳压输出+5V电压),脉宽调制器为并联推挽式输出,⑧、11脚输出相位差180度的脉宽调制信号,输出频率为IC2的⑤、⑥脚外接定时阻容元件R30、C30的振荡频率的一半,控制推动三极管Q3、Q4的c极相连接的T2次级绕组的激励振荡。T2初级它激振荡产生的感应电动势作用于T1主电源开关变压器的初级绕组,从T1次级绕组的感应电动势整流输出+3.3V、±5V、±12V等各路输出电压。

D12、D13以及C40用于抬高推动管Q3、Q4的e极电平,使Q3、Q4的b极有低电平脉冲时能可靠截止。C35用于通电瞬间关闭IC2的⑧、11脚输出脉宽调制信号脉冲。ATX电源通电瞬间,由于C35两端电压不能突变,IC2的④脚输出高电平,⑧、11脚无驱动脉冲信号输出。随着C35的充电,IC2的启动由PS信号电平高低来加以控制,PS信号电平为高电平时IC2关闭,为低电平时IC2启动并开始工作。

PG产生电路由IC1(电压比较器LM339N)、R48、C38及其周围元件构成。待机时IC2的③脚(反馈控制端)为零电平,经R48使 IC1的⑨脚正端输入低电位,小于11脚负端输入的固定分压比,IC113脚(PG信号输出端)输出低电位,PG向主机输出零电平的电源自检信号,主机停止工作处于待机状态。受控启动后IC2的③脚电位上升,IC1的⑨脚控制电平也逐渐上升,一旦IC1的⑨脚电位大于11脚的固定分压比,经正反馈的迟滞比较器,13脚输出的PG信号在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5V,主机检测到PG电源完好的信号后启动系统,在主机运行过程中若遇市电停电或用户执行关机操作时,ATX开关电源+5V输出电压必然下跌,这种幅值变小的反馈信号被送到IC2的①脚(电压取样比较器同相输入端),使IC2的③脚电位下降,经R48使

计算机电源维修 电脑电源工作原理及维修详解

IC1的⑨脚电位迅速下降,当⑨脚电位小于11脚的固定分压电平时,IC1的13脚将立即从+5V下跳到零电平,关机时PG输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘的磁头来不及归位而划伤硬盘。(www.t262.com)

5、主电源电路及多路直流稳压输出电路

如图8所示,微机受控启动后,PS信号由主板启动控制电路的电子开关接地,允许IC2的⑧、11脚输出脉宽调制信号,去控制与推动三极管Q3、Q4的c极相连接的T2推动变压器次级绕组产生的激励振荡脉冲。T2的初级绕组由它激振荡产生的感应电动势作用于T1主电源开关变压器的初级绕组,从T1次级①②绕组产生的感应电动势经D20、D28整流、L2(功率因素校正变压器,也称低电压扼流线圈。以它为主来构成功率因素校正电路,简称PFC电路,起自动调节负载功率大小的作用。当负载要求功率很大时,则PFC电路就经过L2来校正功率大小,为负载输送较大的功率;当负载处于节能状态时,要求的功率很小,PFC电路通过L2校正后为负载送出较小的功率,从而达到节能的作用。)第④绕组以及C23滤波后输出—12V电压;从T1次级③④⑤绕组产生的感应电动势经D24、D27整流、L2第①绕组及C24滤波后输出—5V电压;从T1次级③④⑤绕组产生的感应电动势经D21、L2第②③绕组以及C25、C26、C27滤波后输出+5V电压;从T1次级③⑤绕组产生的感应电动势经L6、L7、D23、L1以及C28滤波后输出+3.3V电压;从T1次级⑥⑦绕组产生的感应电动势经D22、L2第⑤绕组以及C29滤波后输出+12V电压。其中,每两个绕组之间的R(5Ω/1/2W)、C(103)组成尖峰消除网络,以降低绕组之间的反峰电压,保证电路能够持续稳定地工作。

ATX微机开关电源维修教程3

6、自动稳压稳流控制电路

(1)+3.3V自动稳压电路

IC5(精密稳压电路TL431)、Q2、R25、R26、R27、R28、R18、R19、R20、D30、D31、D23(场效应管)、R08、C28、C34等组成+3.3V自动稳压电路。如图9所示。

当输出电压(+3.3V)升高时,由R25、R26、R27取得升高的采样电压送到IC5的G端,使UG电位上升,UK电位下降,从而使Q2导通,升高的+3.3V电压通过Q2的ec极,R18、D30、D31送至D23的S极和G极,使D23提前导通,控制D23的D极输出电压下降,经L1使输出电压稳定在标准值(+3.3V)左右,反之,稳压控制过程相反。

(2)+5V、+12V自动稳压电路

IC2的①、②脚电压取样比较器正、负输入端,取样电阻R15、R16、R33、R35、R68、R69、R47、R32构成+5V、+12V自动稳压电路。如图10所示。

计算机电源维修 电脑电源工作原理及维修详解

当输出电压升高时(+5V或+12V),由R33、R35、R69并联后的总电阻取得采样电压,送到IC2的①脚和②脚,与IC2内部的基准电压相比较,输出误差电压与IC2内部锯齿波产生电路的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内。(www.t262.com)

反之稳压控制过程相反,从而使开关电源输出电压保持稳定。

(3)+3.3V、+5V、+12V自动稳压电路

IC4(精密稳压电路TL431)、IC3、Q1、R01、R02、R03、R04、R05、R005、D7、C09、C41等组成+3.3V、、自动稳压电路。如图11所示。 当输出电压升高时,T3次级绕组产生的感应电动势经D50、C04整流滤波后一路经R01限流送至IC3的①脚,另一路经R02、R03获得增大的取样电压送至IC4的G端,使UG电位上升,UK电位下降,从而使IC4内发光二极管流过的电流增加,使光敏三极管导通,从而使Q1导通,同时经负反馈支路R005、C41使开关三极管Q03的e极电位上升,使得Q03的b极分流增加,导致Q03的脉冲宽度变窄,导通时间缩短,最终使输出电压下降,稳定在规定范围之内。 反之,当输出电压下降时,则稳压控制过程相反。

(4)自动稳流电路

IC2的15、16脚电流取样比较器正、负输入端,取样电阻R51、R56、R57构成负载自动稳流电路。如图12所示。

负端输入端15脚接稳压+5V,正端输入端16脚, 该脚外接的R51、R56、R57与地之间形成回路,当负载电流偏高时,T2次级绕组产生的感应电动势经R10、D14、C36整流滤波,再经R54、R55降压后获得增大的取样电压,同时与R51、R56、R57支路取得增大的采样电流一起送到IC215脚和16脚,与IC2内部基准电流相比较,输出误差电流,与IC2内部锯齿波产生电路产生的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电流回落至标准值的范围之内。

反之稳流控制过程相反,从而使开关电源输出电流保持稳定.

ATX微机开关电源维修教程4

三、检修的基本方法与技巧

计算机ATX开关电源与日常生活中彩电的开关电源显著的区别是:前者取消了传统的市电按键开关,采用新型的触点开关,并且依靠+5VSB、PS控制信号的组合来实现电源的自动开启和自动关闭。主机在通电的瞬间,主机电源会向主板发送一个Power Good(简称PG)信号,如果主机电源的输入电压在额定范围之内,输出电压也达到最低检测电平(+5V输出为4.75V以上),并且让时间延

计算机电源维修 电脑电源工作原理及维修详解

迟约100ms~500ms后(目的是让电源电压变得更加稳定),PG电路就会发出“电源正常”的信号,接着CPU会产生一个复位信号,执行BIOS中的自检,主机才能正常启动。(www.t262.com)+5VSB是供主机系统在ATX待机状态时的电源,以及开启和关闭自动管理模块及其远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头⑨脚引出。如图13所示。PS为主机开启或关闭电源以及网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时的电压值各不相同,常见的待机电压值为3V、3.6V、4.6V。当按下主机面板的POWER电源开关或实现网络唤醒远程开机时,受控启动后PS由主板的电子开关接地,使用绿色线从ATX插头14脚输入。PG是供主板检测电源好坏的输出信号,使用灰色线由ATX插头⑧脚引出,待机状态为低电平(0V),受控启动电压输出稳定的高电平(+5V)。

脱机带电检测ATX电源 ,首先测量在待机状态下的PS和PG信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它任何电压。其次是将ATX开关电源进行人工唤醒,方法是:用一根导线把ATX插头14脚(绿色线)PS信号与任一地端(黑色线3、7、13、15、16、17)中的任一脚短接,这一步是检测的关键(否则,通电时开关电源风扇将不旋转,整个电路无任何反应,导致无法检修或无法判断其故障部位和质量好坏)。将ATX电源由待机状态唤醒为启动受控状态,此时PS信号变为低电平,PG、+5VSB信号变为高电平,这时可观察到开关电源风扇旋转。为了验证电源的带负载能力,通电前可在电源的+12V输出插头处再接一个开关电源风扇或CPU电源风扇,也可在+5V与地之间并联一个4Ω/10W左右的大功率电阻做假负载。然后通电测量各路输出电压值是否正常,如果正常且稳定,则可放心接上主机内各部件进行使用;如发现不正常,则必须重新认真检查电路,此时绝对不允许与主机内各部件连接,以免通电造成严重的经济损失。

上述操作亦可作为单独选购ATX开关电源脱机通电验证质量好坏的方法。 atx微机开关电源自动稳压稳流控制电路

(1)+3.3v自动稳压电路

ic5(精密稳压电路tl431)、q2、r25、r26、r27、r28、r18、r19、r20、d30、d31、d23(场效应管)、r08、c28、c34等组成+3.3v自动稳压电路。如图9所示。 当输出电压(+3.3v)升高时,由r25、r26、r27取得升高的采样电压送到ic5的g端,使ug电位上升,uk电位下降,从而使q2导通,升高的+3.3v电压通过q2的ec极,r18、d30、d31送至d23的s极和g极,使d23提前导通,控制d23的d极输出电压下降,经l1使输出电压稳定在标准值(+3.3v)左右,反之,稳压控制过程相反。

(2)+5v、+12v自动稳压电路

ic2的①、②脚电压取样比较器正、负输入端,取样电阻r15、r16、r33、r35、r68、r69、r47、r32构成+5v、+12v自动稳压电路。如图10所示。

计算机电源维修 电脑电源工作原理及维修详解

当输出电压升高时(+5v或+12v),由r33、r35、r69并联后的总电阻取得采样电压,送到ic2的①脚和②脚,与ic2内部的基准电压相比较,输出误差电压与ic2内部锯齿波产生电路的振荡脉冲在pwm(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内。(www.t262.com]

反之稳压控制过程相反,从而使开关电源输出电压保持稳定。

(3)+3.3v、+5v、+12v自动稳压电路

ic4(精密稳压电路tl431)、ic3、q1、r01、r02、r03、r04、r05、r005、d7、c09、c41等组成+3.3v、、自动稳压电路。如图11所示。

当输出电压升高时,t3次级绕组产生的感应电动势经d50、c04整流滤波后一路经r01限流送至ic3的①脚,另一路经r02、r03获得增大的取样电压送至ic4的g端,使ug电位上升,uk电位下降,从而使ic4内发光二极管流过的电流增加,使光敏三极管导通,从而使q1导通,同时经负反馈支路r005、c41使开关三极管q03的e极电位上升,使得q03的b极分流增加,导致q03的脉冲宽度变窄,导通时间缩短,最终使输出电压下降,稳定在规定范围之内。

反之,当输出电压下降时,则稳压控制过程相反。

(4)自动稳流电路

ic2的15、16脚电流取样比较器正、负输入端,取样电阻r51、r56、r57构成负载自动稳流电路。如图12所示。

负端输入端15脚接稳压+5v,正端输入端16脚, 该脚外接的r51、r56、r57与地之间形成回路,当负载电流偏高时,t2次级绕组产生的感应电动势经r10、d14、c36整流滤波,再经r54、r55降压后获得增大的取样电压,同时与r51、r56、r57支路取得增大的采样电流一起送到ic215脚和16脚,与ic2内部基准电流相比较,输出误差电流,与ic2内部锯齿波产生电路产生的振荡脉冲在pwm(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电流回落至标准值的范围之内。

计算机电源维修 电脑电源工作原理及维修详解

反之稳流控制过程相反,从而使开关电源输出电流保持稳定

.

计算机电源维修 电脑电源工作原理及维修详解

ATX微机开关电源维修教程5

四、故障检修实例

实例1 一台LWT2005型开关电源供应器,开机出现“三无(主机电源指示灯不亮,开关电源风扇不转,显示器点不亮)”。(www.t262.com)

故障分析与维修:先采用替换法(用一个好的ATX开关电源替换原主机箱内的ATX电源)确认LWT2005型开关电源已坏。然后拆开故障电源外壳,直观检查发现机板上辅助电源电路部分的R001、R003、R05呈开路性损坏,Q1(C1815)、开关管Q03(BUT11A)呈短路性损坏,如图14所示。且R003烧焦、Q1的c、e极炸断,保险管FUSE(5A/250V)发黑熔断。经更换上述损坏元器件后,采用二中的检修方法和技巧:用一根导线将ATX插头14脚与15脚(两脚相邻,便于连接)连接,并在+12V端接一个电源风扇。检查无误后通电,

计算机电源维修 电脑电源工作原理及维修详解

发现两个电源风扇(开关电源自带一个+12V散热风扇)转速过快,且发出很强的呜音,迅速测得+12V上升为+14V,且辅助电源电路部分发出一股逐渐加强的焦味,立即关电。[www.t262.com]分析认为,输出电压升高,一般是稳压电路有问题。细查为IC4、IC3构成的稳压电路部分的IC3(光电耦合器Q817)不良。由于IC3不良,当输出电压升高时,IC3内部的光敏三极管不能及时导通,从而就没有反馈电流进入开关管Q03的e极,不能及时缩短Q03的导通时间,导致Q03导通时间过长,输出电压升高。如不及时关电,(从发出的焦味来看,Q03很可能因导通时间过长,功耗过重而损坏)又将大面积地烧坏元器件。

将IC3更换后,重新检查、测量刚才更换过的元器件,确认完好后通电。测各路输出电压一切正常,风扇转速正常(几乎听不到转动声)。通电观察半小时无异常现象。再接入主机内的主板上,通电试机2小时一直正常。至此,检修过程结束。后又维修大量同型号或不同型号(其电路大多数相同或类似)的开关电源,其损坏的电路及元器件大多雷同。

实例2 一台银河YH—004A型开关电源供应器,开机出现“三无”。

故障分析与维修:先采用替换法确认该开关电源已坏。然后拆开故障电源外壳,直观检查机板上辅助电源电路部分,发现D30、ZD3、R78、Q15(开关管)烧坏。根据实物绘制关键电路如图15所示,经更换上述元器件后并按实例1方法进行通电试机,发现两个电源风扇时转时不转。怀疑电路中有虚焊,将整个电路重新加焊一遍后,通电故障如初。维修一时陷入困境。后经仔细分析电路图,在电源风扇时转时不转的瞬间,测得开关电源输出电压波动很大,莫非稳压电路出了故障?

经与实例1中相关电路相比较,两种开关电源电路有较大差别,但所用的脉宽调制集成电路都是双排8脚,前例采用的是IC2(KA7500B),本例是IC1(TL494)(有些也采用BDL494),分析、比较两种不同标号的集成电路,得出两者的引脚、功能完全相同,可以直接互换。以此推测出IC1(TL494)的稳压原理如下:IC1(TL494)的①、②脚电压取样比较器正、负输入端,取样电阻R31、R32、R33、R37、R38构成+5V、+12V自动稳压电路。如图16所示。

当输出电压升高时(+5V或+12V),由R31取得采样电压送到IC1①脚和②脚,并与IC1内部基准电压相比较,输出误差电压与IC1内部锯齿波产生电路的振荡脉冲在PWM(比较器)中进行比较放大,使⑧、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内。当输出电压降低时,稳压控制过程相反,从而使开关电源输出电压保持稳定。

开路测量R31、R32、R33、R37、R38阻值正常,在路检测IC1(TL494)的①、②脚电阻值与IC2(KA7500B)①、②脚电阻值相比较,差别很大。试用一只KA7500B集成电路代换TL494后,经查无误后通电试机,测得各路输出电压值正常,风扇转速正常。接入主机内,通电试机一切正常。检修过程结束。

实例3 一台ATX—300L型开关电源供应器(简称007电源),开机出现“三无”。

计算机电源维修 电脑电源工作原理及维修详解

故障分析与维修:如图17所示。[www.t262.com)先用代换法确认该电源已烧坏;然后拆开外壳,直观检查保险丝烧黑,用表测量主电源开关三极管Q01、Q02(两者型号均为C4106)击穿短路,整流电路部分印制线路板烧黑。将Q1、Q2用同型号换新(注:两者必须同型号,否则将导致带载能力下降,输出电压不稳定,从而引起主电源开关管再次击穿。如推动三极管Q3、Q4损坏,其更换方法类似),并将印制线路板烧黑部分用小刀剥开划断,再用导线按原线路接好(必须做好这一步,因路板烧黑被炭化后易导电)。由于保险管焊在路板上(维修多台开关电源都是如此,其作用是保证接触良好),焊下坏管,用一新的4A/250V保险管焊上。

经检查无误后通电开机,电源风扇旋转,各路输出电压正常。接入主机板开机时,CPU风扇旋转,但显示器黑屏,测+5V、+12V电压在规定电压值内波动,不稳定。仔细观察,发现电源风扇转速过快,测IC2(KA7500B)的12脚(VCC电源端)电压高达23V(正常时一般为19V)且抖动,测13、14、15脚有正常的+5V电压输出。怀疑IC2内部不良,果断更换IC2,再开机,显示器点亮,各路输出电压正常,故障排除。

ATX微机开关电源维修教程6

附: ATX开关电源电压比较器LM339N和脉宽调制集成电路KA7500B各引脚功能及实测数据,表中电压数据以伏特(V)为单位,用南京产MF47型万用表10V、50V、250V直流电压挡,在ATX电源脱机检修好后,连接主机内各部件正常工作状态下测得;在路电阻数据以千欧(KΩ)为单位,用R×1K挡测得,正向电阻用红表笔测量,反向电阻用黑表笔测量,另一表笔接地。 表1:电压比较器LM339N引脚功能及实测数据

计算机电源维修 电脑电源工作原理及维修详解

说明:当用表笔测量LM339N的第11脚电压时,将引起电脑重新启动,属于正常现象。(www.t262.com)

ATX微机开关电源维修教程7

表2:脉宽调制集成电路KA7500B各引脚功能及实测数据

表3:开关电源电路主要三极管实测电压值(单位:V)

计算机电源维修 电脑电源工作原理及维修详解

如何得知我们买到的电源是多大功率呢?DIYer们常用两种方法:一种方法是看电源上的型号,一般来说,电源的型号和它本身的功率有着密切的联系。(www.t262.com)例如我们买到一台银河YH-2503C电源,有的人就说该电源是250W的;另一种方法是把标称的各路输出电压乘以对应的输出电流后相加得出该电源的功率。许多刊物上是这样介绍的,买电源时,商家是这么给我们介绍的,大部分爱好者们也是这样计算的。其实,上面两种计算方法都是片面和一厢情愿的。从银河网站上找到的银河电源的型号及相应的参数见表4,从表中可以看出,型号为YH-2503C的电源,其实际功率只有200W,我们不明白型号后面的数字具体表示什么含义,但表中数据却说明了型号后面的数字和功率并不等同,所以买电源时,不要为型号后面的数字所迷惑。而如果按上面第二种计算方法,很多电源都是250W的,甚至功率还要高。表5中为市售LS-280A ATX电源标签上的输出参数值,根据表中的数据按上述方法计算,得出的输出功率高达262.3W。那么这台电源的实际功率到底是多大?

表4 YH系列ATX智能化绿色开关电源参数

计算机电源维修 电脑电源工作原理及维修详解

表5 LS-280A电源各路输出电流值

有一个很重要的问题,各路直流输出的最大电流是不可能同时得到的,所以标出的功率也是无法达到的。(www.t262.com)

解剖一下ATX电源的电路,我们会发现,ATX电源的主电路是在AT电源的主电路的基础上发展而来的,部分电路见图4,从图中可以发现,+3.3V电压是将+5V绕组的交流电压经L降压后整流滤波输出的,也就是说,+3.3V和+5V电压共用一个绕组。在标准的AT电源中,+5V电压输出的最大工作电流为23A,比较一下二者的开关变压器的磁芯截面积和线圈的线径,二者并无什么不同,从而证明了+5V和+3.3V电压的工作电流不可能同时达到最大。所以,上面的标称的功率是无法达到的。很明显,能同时输出的实际最大功率才是有意义的。简单地独立地将各路输出相乘再相加是不科学的。

要检测电源各路输出的最大电流,比较麻烦,但我们可以简单地做一个实验。衡量一台电源合格与否的一个重要参数是各路输出电压的误差范围,从ATX网站上我们得知,对+5V、+3.3V和+12V电压的误差率为5%,对-5V和-12V电压

计算机电源维修 电脑电源工作原理及维修详解

的误差率为10%,这是一个至关重要的指标,电压太低计算机无法工作,电压太高会烧了你的宝贝。(www.t262.com]其电压范围应该如表6所示。

表6 输出电压的稳定性

另外,我们对输出电压的纹波还有较高的要求,电源输出的各路直流电压,其交流成分越小越好,纹波太大会对各种芯片有不良影响。比较合适的纹波大小如表7所示。

表7 输出电压的纹波电压的标准

实验是通过检测电源的各路主电压的负载压降和纹波系数来得出各路输出电压的最大电流。

1、测各路输出电压的最大输出电流:要注意的是,由于电路中都是以+5V电压为基准来调整各路电压的,如果+5V电压空载,其它各路电压的输出会大幅降低,因此测其它各路电压的最大电流时,+5V电压输出端的负载电阻不能去掉。测量的方法是在各路电压输出端接上不同阻值的电阻,然后将该负载电阻值逐渐

计算机电源维修 电脑电源工作原理及维修详解

减少,当所测的输出电压值低于该路电压的稳定范围时,记录下此时的电流值作为最大电流。[www.t262.com]测量的数据见表8。

表8 电源各路输出的最大电流

从表中的数据可以看出,电源能工作的最大电流和电源盒上的标称值是有很大的差距的。如果按电压乘电流的方法计算功率的话,以上三路输出的功率只有

3.3*6.6+5*6.3+12*2.4近似等于80W,再加上其它各路输出,该电源的实际输出功率也就100W左右。另外,由于各路输出最大电流不可能同时达到,因此,测得能同时达到的最大输出电流才有意义。

2、测量电源各路电压同时输出时各自的最大电流值:

在各路电压输出端同时接上最小负载,此时电源以满负荷运行,因此测量的速度要快。接通电源开关,此时电源内发出过载的“吱吱“声,让人胆颤心惊,怕继续操作下去把电源烧毁,该实验没有继续做下去,但说明了电源的各路输出同时能达到的最大输出电流比表8中的值还要小得多。最终的输出功率还不到100W!实验的结果实在让人很沮丧,为什么会出现这样的结果呢?实际解剖一下买来的ATX电源,你就会发现:厂家为节省成本,在元件选择上偷工减料,偷工减料是市售ATX电源功率不足的罪魁祸首。

首先看一下电源中采用的功率开关管,市售电源中,大部分兼容电源中采用的功率开关管型号都为MJE13007(有的只采用MJE13005),见图5中的晶体管。查一下晶体管手册,得知该管的参数为75W/400V/8A,双管功率只有150W,再算上开关电源最大约70%的转换效率,能输出的功率只有100W左右,这和上面实验得出的数值是相符的,从而证实我们买到的电源,标称230W也好、200W也好,功率只有这么150W。顺便说一句,这种型号的晶体管更多地被用于电子日光灯中,因其耐压较高,被厂家移花接木于开关电源中。

其次看一下整流输出电路中采用的快速整流对管,市售廉价电源中,不论是+3.3V还是+5V或+12V,其整流对管一律采用MUR1640(16A/40V),要知道厂家标称的+5V电压的输出电流可是21A啊?可能是厂家有自知之明,反正电源能输出的最大电流也不会超过此值(开关功率管根本就提供不了),整流管的额定电流取得再大也没有用处,省得再增加成本了。

最后看一下电源开关电路中采用的开关变压器,如今的变压器的大小比起286时的可要小得多了,那时的电源的标称一般比较实在,是多少瓦就标多少瓦,对

计算机电源维修 电脑电源工作原理及维修详解

比现在的电源,变压器磁芯截面积小了,所用的漆包线的线径细了,变压器的功率又怎能上得去呢?

很明显,现在市场上销售的电源质量、元件用料、产品的合格程度已和以前有了较大的不同,不看别的,只从电源的重量对比上就可以猜测出现在标称250W的电源中蕴藏着多少水分,因为重量的减轻意味着电源盒内部元件数量和质量上的偷工减料、散热片重量的减轻、开关变压器和功率开关管的功率下降,以及电源盒外壳铁皮厚度的锐减等。[www.t262.com]

由此,我们从市场上购买的电源会出现功率不足的现象就很正常了,那是一些小厂为了迎合用户口味,把电源的功率使劲地往大里标,其实际功率又实在有限,再加上销售上的误导,形成了购买电源要功率越大越好的误区。目前市场上,部分比较负责任的品牌的电源除了标出各路电压、电流的输出值外,还专门指出电源总功率不超过145W,或总电流不超过35A,只有这样能保证同时输出的实际最大功率才有意义。所以说不能盲目地追求功率,关键在于电源的性能和质量。 计算电源的功率时,如果电源限定了某几路输出的最大功率,就按功率的限定值计算,如果限定了某几路输出的最大电流,就按其中的最大电压输出乘以最大的电流计算,简单地独立地将各路输出相乘再相加是不科学的。由于计算方法不同,各厂商的电源功率就不完全可比,虽然多数厂商没有提供合理的计算数据,但大都会提供电压和电流的独立参数,根据这些虽然不能准确地计算出电源的功率,但同类参数之间还是有可比性的。

ATX电源工作原理及检修

检修ATX开关电源,从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。

一、+5VSB、PS-ON、PW-OK控制信号

ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。

脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它电压。其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一

计算机电源维修 电脑电源工作原理及维修详解

地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。(www.t262.com]上述操作亦可作为选购ATX开关电源脱机通电验证的方法。

二、 控制电路的工作原理

ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。请参照下图。

1.辅助电源电路

只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。

Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。

Q15饱和期间,T3二次绕组输出端的感应电势为负,整流管截止,流经一次绕组的导通电流以磁能的形式储存在T3辅助电源变压器中。当Q15由饱和转向截止时,二次绕组两个输出端的感应电势为正,T3储存的磁能转化为电能经BD5、BD6整流输出。其中BD5整流输出电压供Q16三端稳压器7805工作,Q16输出+5VSB,若该电压丢失,主板就不会自动唤醒ATX电源启动。BD6整流输出电压供给IC1脉宽调制TL494的12脚电源输入端,该芯片14脚输出稳压5V,提供ATX开关电源控制电路所有元件的工作电压。

2.PS-ON和PW-OK、脉宽调制电路

PS-ON信号控制IC1的4脚死区电压,待机时,主板启闭控制电路的电子开关断开,PS-ON信号高电平3.6V,IC10精密稳压电路WL431的Ur电位上升,Uk电位下降,Q7导通,稳压5V通过Q7的e、c极,R80、D25和D40送入IC1的4脚,当4脚电压超过3V时,封锁8、11脚的调制脉宽输出,使T2推动变压器、T1

计算机电源维修 电脑电源工作原理及维修详解

主电源开关变压器停振,停止提供+3.3V、±5V、±12V的输出电压。[www.t262.com) 受控启动后,PS-ON信号由主板启闭控制电路的电子开关接地,IC10的Ur为零电位,Uk电位升至+5V,Q7截止,c极为零电位,IC1的4脚低电平,允许8、11脚输出脉宽调制信号。IC1的输出方式控制端13脚接稳压5V,脉宽调制器为并联推挽式输出,8、11脚输出相位差180度的脉宽调制控制信号,输出频率为IC1的5、6脚外接定时阻容元件的振荡频率的一半,控制Q3、Q4的c极所接T2推动变压器初级绕组的激励振荡,T2次级它激振荡产生的感应电势作用于T1主电源开关变压器的一次绕组,二次绕组的感应电势经整流形成+3.3V、±5V、±12V的输出电压。

推动管Q3、Q4发射极所接的D17、D18以及C17用于抬高Q3、Q4发射极电平,使Q3、Q4基极有低电平脉冲时能可靠截止。C31用于通电瞬间封锁IC1的8、11脚输出脉冲,ATX电源带电瞬间,由于C31两端电压不能突变,IC1的4脚出现高电平,8、11脚无驱动脉冲输出。随着C31的充电,IC1的启动由PS-ON信号控制。

PW-OK产生电路由IC5电压比较器LM393、Q21、C60及其周边元件构成。 待机时IC1的反馈控制端3脚为低电平,Q21饱和导通,IC5的3脚正端输入低电位,小于2脚负端输入的固定分压比,1脚低电位,PW-OK向主机输出零电平的电源自检信号,主机停止工作处于待命休闲状态。受控启动后IC1的3脚电位上升,Q21由饱和导通进入放大状态,e极电位由稳压5V经R104对C60充电来建立,随着C60充电的逐渐进行,IC5的3脚控制电平逐渐上升,一旦IC5的3脚电位大于2脚的固定分压比,经正反馈的迟滞比较器,1脚输出高电平的PW-OK信号。该信号相当于AT电源的PG信号,在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5V,主机检测到PW-OK电源完好的信号后启动系统。在主机运行过程中若遇市电掉电或用户关机时,ATX开关电源+5V输出端电压必下跌,这种幅值变小的反馈信号被送到IC1组件的电压取样放大器同相端1脚后,将引起如下的连锁反应:使IC1的反馈控制端3脚电位下降,经R63耦合到Q21的基极,随着Q21基极电位下降,一旦Q21的e、b极电位达到0.7V,Q21饱和导通,IC5的3脚电位迅速下降,当3脚电位小于2脚的固定分压电平时,IC5的输出端1脚将立即从5V下跳到零电平,关机时PW-OK输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘磁头来不及移至着陆区而划伤硬盘。

3.自动稳压控制电路

IC1的1、2脚电压取样放大器正、负输入端,取样电阻R31、R32、R33构成+5V、+12V自动稳压电路。当输出电压升高时(+5V或+12V),由R31取得采样电压送到IC1的1脚和2脚基准电压相比较,输出误差电压与芯片内锯齿波产生电路的振荡脉冲在PWM比较器进行比较放大,使8、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内,反之稳压控制过程相反,从而使开关电源输出电压稳定。IC1的电流取样放大器负端输入15脚接稳压5V,正端输入16脚接地,电流取样放大器在脉宽调制控制电路中没有使用。

电源的工作原理方框图

计算机电源维修 电脑电源工作原理及维修详解

1.ATX电源的工作原理方框图ATX电源方框图如图所示。(www.t262.com]从图可以看出,ATX电源的主变换电路和AT电源相似,采用双管半桥它激式电路。整个电路的核心是脉宽调制(PWM)控制芯片,多数ATX电源都采用TL494(或其替代芯片),利用TL494的④脚“死区控制”功能来实现主变换电路的开启和关

闭。 2.如何判定故障范围由于微机电源都设置了过压、过流保护电路,电源发生故障时,大多表现为主机加电无任何指示,主机不启动,显示器无任何显示,电源风扇不转。由于ATX主板上有一部分电路称为“电源检测模块”,它可以控制电源的开启和关闭,这部分电路出现了故障,也表现为上述故障现象。那么,怎样判定是ATX电源故障还是主板故障呢?ATX电源和主板之间是通过一个20脚长方形双排综合插件连接的,其中14脚(绿色线)为PS-ON信号,主板就是通过这个信号来控制电源的开启和关闭的。当主板电源的“电源检测部件”使PS-ON信号为高电平时,电源关闭;当主板使PS-ON信号为低电平时,电源工作,向主板供电。当ATX电源不和主板相连时,电源内部提供PS-ON信号高电平,ATX电源不工作,处于待机状态。当计算机通电后无法开启时,可将所有供电插头拔下,将14脚和地线(黑色线)用导线短接,若电源风扇转动,各路输出正确,即可判定电源是正常的,否则是电源故

障。

3.ATX电源常见故障维修(l)无300V直流电压。这种故障,首先从交流输入插座查起,保险管、整流二极管(桥)、滤波电容是常坏的元件。找到损坏元件后,还要检查主变换电路大功率开关管及其附属电路,在保证其正常时,才可以加电,因为这种故障通常是大功率元件损坏后引起的。大功率管多采用

MJE13007(400V/8A/75W),是故障率最高的元件,更换时要选用性能参数等于或高于原参数的管子,要注意两个管子的参数应一致。(2)通电后辅助电源正常,启动电源各路主电压无输出。这种故障有两种可能,一是主变换电路有故障,二是控制部分损坏。首先静态检查半桥功率管及其附属电路和驱动电路,若无故障,检查TL494④脚在PS-ON信号为低电平时是否变为低电平,若无变化,是PS-ON处理电路故障,有变化,再检查8 、11脚有无脉冲输出,若无则TL494损坏。(3)有300v直流电压,辅助电源不工作。这是最常见的故障.表现为+300V正常,无+5VSB电压,Tl494的12脚无电压,可以判定辅助电源有故障,辅助电源常见电路简图如图

三。 这是典型的单管自激式开关电源电路,变压器T3次级有两路输出,一路经整流滤波再由7805稳压,输出5VSB电压;另一路整流滤波后,直接加在TL494的12脚,作为TL494的工作电源,由于TL494的可工作电压范围较宽(7~40V),这一路没有稳压措施。TL494的14脚输出基准+5V(VREF),提供给保护电路、P.G产生电路和PS-ON处理电路,作为这些电路的工作电压。由于电路简单,没有完善的稳压调控及保护电路,使辅助电源电路成为ATX电源中故障率较高的部分,常损坏的元件是功率管和功率电阻(4.7Ω),特别是功率管的启动电阻(300kΩ)。另外,辅助电源出现故障,输出电过高时,也可能造成其供电的电路无件损坏,如TL494等这是出ATX电源的特点决定的。当计算机软关闭后,市电并没有断掉,辅助电源一直在工作,特别在夜间,市电有可能很高,并且辅助电源也较为简易,所以极易损坏辅助电源

计算机电源维修 电脑电源工作原理及维修详解

电路。(www.t262.com)一般在没有特殊情况时,软关机后若较长时间不用,应切断市电。(4)各路电压正常,无P.G信号。

在电源加电后,辅助电源首先建立VREF(LM393的电源也为VREF),TL494的③脚提供较低电压,三极管A733导通,LM393的①脚输出低电平。当ATX电源开启主变换电路工作,TL494的③脚维持较高电平,使二极管A733处于截止状态,VREF通过电容(4.7uF)充电,延迟一段时间后,输出+5V的P.G信号,主机开始工作。当电源输出电压降低时,检测电路送到TL494的检测电压也随之降低,如果电压降低超过额定范围,TL494的③脚电平将降为低电平,三极管A733导通,使l。M393的①脚输出低电平,主机停止工作。出现上述故障,一般是LM393集成电路坏,P.G信号恒为低电平,也有可能是三极管A733短路,将P.G信号钳位在低电平。这部分电路由于工作电压较低,阻容元件很少发生故障。将损坏的元件更交换后,即可排除该故障。

计算机电源维修 电脑电源工作原理及维修详解

[www.t262.com)

计算机电源维修 电脑电源工作原理及维修详解

(www.t262.com)

计算机电源维修 电脑电源工作原理及维修详解

[www.t262.com]

计算机电源维修 电脑电源工作原理及维修详解

ATX电源维修技巧

故障现象,无输出 测量发现插头9脚无+5VSB电压,因此可以判断辅电源没有工作。[www.t262.com)测量IC3 L7805三端稳压输入端和输出端均无电压,但有时输入端有20V电压,输出端有5V电压,此时短接13、14脚电压输出正常,但把短接线断开再次接通时电压又无输出。测量辅电源集电极电压,从万用表的指示中发现已起振,因此怀疑故障出在变压器的二次绕组端。更换电容C04、断开L7805的输入端,二次绕组仍无电压,再次按照电源未起振的故障来从初次绕组端查找故障,后发现,当用万用表测量开关管的集电极时,电压有时能恢复正常,因此增强了按未起振来查找故障的信心。测量发现R02电阻已变为无穷大,此电阻的作用是将市电整流滤波后的电压引入开关管的基极,正是开产电源起振的前提条件,用一390K的电阻更换R02,故障排除。 集成电路应用电路识图方法在无线电设备中,集成电路的应用愈来愈广泛,对集成电路应用电路的识图是电路分析中的一个重点,也是难点之一。 1.集成电路应用电路图功能 集成电路应用电路图具有下列一些功能: ①它表达了集成电路各引脚外电路结构、元器件参数等,从而表示了某一集成电路的完整工作情况。 ②有些集成电路应用电路中,画出了集成电路的内电路方框图,这时对分析集成电路应用电路是相当方便的,但这种表示方式不多。 ③集成电路应用电路有典型应用电路和实用电路两种,前者在集成电路手册中可以查到,后者出现在实用电路中,这两种应用电路相差不大,根据这一特点,在没有实际应用电路图时可以用典型应用电路图作参考,这一方法修理中常常采用。 ④一般情况集成电路应用电路表达了一个完整的单元电路,或一个电路系统,但有些情况下一个完整的电路系统要用到两个或更多的集成电路。 2.集成电路应用电路特点 集成电路应用电路图具有下列一些特点: ①大部分应用电路不画出内电路方框图,这对识图不利,尤其对初学者进行电路工作分析时更为不利。 ②对初学者而言,分析集成电路的应用电路比分析分立元器件的电路更为困难,这是对集成电路内部电路不了解的原缘,实际上识图也好、修理也好,集成电路比分立元器件电路更为方便。 ③对集成电路应用电路而言,大致了解集成电路内部电路和详细了解各引脚作用的情况下,识图是比较方便的。这是因为同类型集成电路具有规律性,在掌握了它们的共性后,可以方便地分析许多同功能不同型号的集成电路应用电路。 3.集成电路应用电路识图方法和注意事项 分析集成电路的方法和注意事项主要有下列几点: (1)了解各引脚的作用是识图的关键 了解各引脚的作用可以查阅有关集成电路应用手册。知道了各引脚作用之后,分析各引脚外电路工作原理和元器件作用就方便了。例如:知道①脚是输入引脚,那么与①脚所串联的电容是输入端耦合电路,与①脚相连的电路是输入电路。 (2)了解集成电路各引脚作用的三种方法 了解集成电路各引脚作用有三种方法:一是查阅有关资料;二是根据集成电路的内电路方框图分析;三是根据集成电路的应用电路中各引脚外电路特征进行分析。对第三种方法要求有比较好的电路分析基础。 (3)电路分析步骤 集成电路应用电路分析步骤如下: ①直流电路分析。这一步主要是进行电源和接地引脚外电路的分析。注意:电源引脚有多个时要分清这几个电源之间的关系,例如是否是前级、后级电路的电源引脚,或是左、右声道的电源引脚;对多个接地引脚也要这样分清。分清多个电源引脚和接地引脚,对修理是有用的。 ②信号传输分析。这一步主要分析信号输入引脚和输出引脚外电路。当集成电路有多个输入、输出引脚时,要搞清楚是前级还是后级电路的输出引脚;对于双声道电路还分清左、右声道的

计算机电源维修 电脑电源工作原理及维修详解

输入和输出引脚。(www.t262.com) ③其他引脚外电路分析。例如找出负反馈引脚、消振引脚等,这一步的分析是最困难的,对初学者而言要借助于引脚作用资料或内电路方框图。 ④有了一定的识图能力后,要学会总结各种功能集成电路的引脚外电路规律,并要掌握这种规律,这对提高识图速度是有用的。例如,输入引脚外电路的规律是:通过一个耦合电容或一个耦合电路与前级电路的输出端相连;输出引脚外电路的规律是:通过一个耦合电路与后级电路的输入端相连。 ⑤分析集成电路的内电路对信号放大、处理过程时,最好是查阅该集成电路的内电路方框图。分析内电路方框图时,可以通过信号传输线路中的箭头指示,知道信号经过了哪些电路的放大或处理,最后信号是从哪个引脚输出。 ⑥了解集成电路的一些关键测试点、引脚直流电压规律对检修电路是十分有用的。OTL电路输出端的直流电压等于集成电路直流工作电压的一半;OCL电路输出端的直流电压等于0V;BTL电路两个输出端的直流电压是相等的,单电源供电时等于直流工作电压的一半,双电源供电时等于0V。当集成电路两个引脚之间接有电阻时,该电阻将影响这两个引脚上的直流电压;当两个引脚之间接有线圈时,这两个引脚的直流电压是相等的,不等时必是线圈开路了;当两个引脚之间接有电容或接RC串联电路时,这两个引脚的直流电压肯定不相等,若相等说明该电容已经击穿。 ⑦一般情况下不要去分析集成电路的内电路工作原理,这是相当复杂的。 1.保险丝熔断故障分析与排除出现此类故障时,先打开电源外壳,检查电源上的保险丝是否熔断,据此可以初步确定逆变电路是否发生了故障。若是,则不外如下三种情况造成:输入回路中某个桥式整流二极管被击穿;高压滤波电解电容C5、C6被击穿·;逆变功率开关管Ql、Q2损坏。其主要原因是因为直流滤波及变换振荡电路长时间工作在高压(十300V)、大电流状态,特别是由于交流电压变化较大、输出负载较重时,易出现保险丝熔断的故障。直流滤波电路由四只整流二极管、两只100kΩ左右限流电阻和两只330uF左右的电解电容组成;变换振荡电路则主要由装在同一散热片上的两只型号相同的大功率开关管组成。交流保险丝熔断后,关机拔掉电源插头,首先仔细观察电路板上各高压元件的外表是否有被击穿烧糊或电解液溢出的痕迹。若无异常,用万用表测量输入端的值:若小于2OOkΩ,说明后端有局部短路现象,再分别测量两个大功率开关管e、c极间的阻值;若小于100kΩ,则说明开关管已损坏,测量四只整流二极管正、反向电阻和两个限流电阻的阻值,用万用表测量其充放电情况以判定是否正常。另外在更换开关管时,如果无法找到同型号产品而选择代用品时,应注意集电极-发射极反向击穿电压Vceo、集电极最大允许耗散功率Pcm、集电极-基极反向击穿电压Vcbo的参数应大于或等于原晶体管的参数。再一个要注意的是:切不可在查出某元件损坏时,更换后便直接开机,这样很可能由于其它高压元件仍有故障,又将更换的元件损坏。一定要对上述电路的所有高压元件进行全面检查测量后,才能彻底排除保险丝熔断故障。 2.无直流电压输出或电压输出不稳定若保险丝完好,在有负载情况下,各级直流电压无输出,其可能原因有:电源中出现开路、短路现象;过压、过流保护电路出现故障;振荡电路没有工作;电源负载过重;高频整流滤电路中整流二极管被击穿;滤波电容漏电等。 处理方法为;用万用表测量系统板十5V电源的对地电阻,若大于0.8Ω,则说明系统板无短路现象。将微机配置改为最小化,即机器中只留主板、电源、蜂鸣器,测量各输出端的直流电压,若仍无输出,说明故障出在微机电源的控制电路中。控制电路主要由集成开关电源控制器(TL-496、GS3424等)和过压保护电路组成,控制电路工作是否正常直接关系到直流电压有无输出。过压保护电路主要由小功率三极管或可控

计算机电源维修 电脑电源工作原理及维修详解

硅及相关元件组成,可用万用表测量该三极管是否被击穿(若是可控硅则需焊下测量),相关电阻及电容是否损坏。(www.t262.com] 3.电源有输出,但开机无显示出现此故障的可能原因是"POWER GOOD"输入的Reset信号延迟时间不够,或"POWER GOOD"无输出。开机后,用电压表测量"POWER GOOD"的输出端(接主机电源插头的1脚),如果无+5V输出,再检查延时元器件;若有+5V输出,则更换延时电路的延时电容即可。 4.电源负载能力差电源在只向主板、软驱供电时能正常工作,当接上硬盘、光驱或插上内存条后,屏幕变自而不能正常工作。其可能原因有:晶体管工作点未选择好,高压滤波电容漏电或损坏,稳压二极管发热漏电,整流二极管损坏等。调换振荡回路中各晶体管,使其增益提高,或调大晶体管的工作点。用万用表检测出有问题的部件后,更换可控硅、稳压二极管、高压滤波电容或整流二极管即可。

ATX电源检修实例

1。今天修了一只北斗星的电源,故障为不能启动主板,短接测试点,电源风扇会转,量各组电压输出完全正常,但细听内部有吱声,拆开发现12V的滤波电容鼓泡,更换后正常工作。

2。最近有修一只多彩(DELUX)电源,是这样的,故障是不通电,打开电源外壳,发现玻璃的保险丝已破裂说明内部的电流很大,存在短路点,待我翻开底板发现一只小蟑螂粘死在板上,且电源的铁壳底上有烧黑,电路板上有烧融的一点电路板,先量几个功率管,好的,再细看,小蟑螂刚好死在电源滤波电容的300V的两端,有无水酒精清洁电路板后,测电源输入部分的整流二极管,4只就坏了两只。这整流二极管不好找一样型号(这玩艺一定要同一型号的,不然不久就会坏),而后找了一只整流桥更换后一切正常。

3,金长城微机原装PS-200ATX电源,开机没反应,测+5VSB为6.7v,PWON为

3.4v,但保险及开关管正常,观察推动变压器初级中心绕组一电阻R11烧黑断路,该电阻为副电源+13.8v为两推动三极管c9015供电限流电阻,查相似电路,更换为1.5k电阻。TL494变色,测+5V基准输出为8.4v,该块坏,更换。+5VSB滤波电容(16V、470UF)鼓起,更换。在副电源光电耦合器次级输出限流电阻R33(2.7K)断路,更换电正常。分析故障原因为电阻R33开路引起副电源电压升高引起一串器件损坏。

银河ATX电源检修实例

故障现象一:受控启动后直流电压无输出。 例1:交流保险管烧黑炸裂,检测BD1至BD4四个整流二极管,辅助电源电路Q15开关三极管、ZD8稳压管,D30、D41二极管击穿短路,限流电阻R72断路。更换上述元件,启动ATX电源恢复正常。Q15的c、e极内含阻尼二极管,其替代型号为2SC2979、2SC3148、2SC3178。 例2:待机、启动状态时,PS-ON、PW-OK均为低电平,检查IC1脉宽调制芯片TL494的12脚有电压输入,14脚无稳压5V输出, 断电后在线测14脚对地阻值几乎为零,吸锡起拔TL494后测电路板IC1的14脚对地阻值在3kΩ以上,正常。焊上16脚插座,用另一片TL494替代时,带电受控启动后风扇转了一下即停,启动后开关电源风扇能微动,说明交流输入整流滤波电路、辅助电源电路正常,故障一般在脉宽调制控制电路及推动级、自动稳压与保护控制电路。检测IC1周围元件正常,手摸IC1芯片发烫,再测14脚对地又短路,连换几片

计算机电源维修 电脑电源工作原理及维修详解

TL494,带电启动电源后芯片不是发烫就是冒烟炸裂,仔细检查替换下的芯片,发现管脚被重新浸锡过,疑是拆机件的翻新品。(www.t262.com]重新换上一片本色管脚的正品TL494,带电测量正常。银河ATX开关电源IC1常见故障是12脚、14脚对地短路,12脚对11脚击穿短路。更换IC1,要谨防该器件是管脚被浸锡后的翻新品,这种芯片经常造成TL494上电烧毁、炸裂,或造成ATX开关电源工作几天又坏,可靠性极差的故障。检修后的ATX开关电源,应按一定间隔和次数人为短接、断开ATX插头14脚的PS-ON与接地端,在待机、启动状态下考查ATX电源工作的可靠性。 例3:辅助电源电路T3变压器次级整流二极管BD6击穿短路,IC1崩裂,BD6整流输出是向IC1的12脚提供输入电源,BD6短路,辅助电源次级交流电压直接加截在TL494芯片上,导致击穿。更换损坏元件,在待机、启动状态下测量PS-ON、PW-OK、+5VSB信号,ATX电源输出电压均正常。 例4:IC1的11、12、14脚对地短路,脉冲半桥功率变换电路T2推动变压器一次绕组振荡管Q3的b、e极击穿短路,辅助电源变压器T3次级滤波电容C16炸裂。检修中发现,当IC1的14脚内部断路无稳压5V输出时,T3次级BD5、BD6整流输出电压升高,C16标称耐压值16V,极易炸裂爆壳,同时TL494击穿短路。用标称耐压值25V以上的电容替代,并更换IC1、Q3管后,电源正常。IC1损坏除了可以用494系列的芯片替换外,还可用TL594、IR3M02、MB3670、ULN8186、ULS8194R等直接替代。 故障现象二:ATX开关电源接主板,启动后PW-OK信号常低,主机不能进入Windows画面。 在线测ATX插头8脚PW-OK信号为0.7V低电平,有直流稳压输出。 ATX电源空载,受控启动后PW-OK高电平,故障属空载正常,加载异常。PW-OK信号变化由Q21 e极电位确定,试换Q21、C60无效,更换C32后正常。 故障现象三:ATX电源刚接入市电,未经启动,风扇有时转动一下即停,瞬间有直流稳压输出。 接通市电,待机状态在线测IC10精密稳压电路WL431,Uk电位时高时低不稳,导致PS-ON控制信号异常,更换C49、C51无效,替换IC10后正常。 0000000000000000000000000000 长城ATX-250S电源无输出,每次插上电源风扇微动一下。经测试直流300伏正常,辅助电压正常,其余无输出,检查发现5伏电路的整流块1545CT击穿,更换后恢复正常。

长城ATX-300P4电源图纸

计算机电源维修 电脑电源工作原理及维修详解

发现几处不当的地方:

计算机电源维修 电脑电源工作原理及维修详解

1 二级管d1的方向好像接反了。[www.t262.com]

2 变压器T1的输出绕组1,2端与负载的连接好像不能构成回路,在2端如果接地就可以构成回路了。

同样输出绕组6,7端也是这个问题。输出绕组3,4,5端除了这个问题,好像还存在别的问题。

3 在讲述工作原理的‘3,辅助电源电路’中,原文:

如图6所示,整流器输出的+300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往

辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03

开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支

路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,

此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生

的感应电动势经D50、C04整流滤波后,一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密

稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出

至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,

从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压

增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势开始下降,最终使T3③~④反馈绕

组感应电动势反相(上负下正),并与C02电压叠加后送往Q03的b极,使b极电位变负,此时开关管Q03

因b极无启动电流而迅速截止。

q03饱和导通时,ic电流不是马上增至最大,电流变化率不为零。而是ic电流逐渐增加,正因为

电流变化率不为零,才有感应电压产生。

在电源工作期间,c04上始终存在一个直流电压,通过R01加在Ic3的发光二级管上,发光二级管

不会截止,发光三级管也不会截止。流过它们的电流有强弱的变化,受c04上电压的控制。

光电耦合坏了可以用一般电阻代替,只是没有了电压自动控制功能,如果还有可控硅保护的话就不用担心了。但不适合电压波动过大的地方

计算机电源维修 电脑电源工作原理及维修详解

还有不当的地方:

辅助电源中,C02的两端不能有并联的二极管D8.

没有二极管D8时,Q03饱和导通时,T3的3端通过C02向Q03的基极充电,随着C02充电电压的升高,充

电电流越来越小,只到Q03脱离饱和区,由于正反馈作用,T3的3端充电电流的减小引起Q03的集电极电

流的加倍减小,当T3的励磁减小,电流变化率成了负的,3端上的电压反向,成为负的,加上C02上的充电

负电压,使Q03迅速截止.电路振荡起来.

如果C02的两端并联了D8,T3的3端通过D8向Q03的基极充电,C02的作用就没有了.电路振荡不起来.

实际维修时常常发现因为Q3,Q4损坏而烧保险和Q03的现象,检修时注意一下这两个管子。(www.t262.com]检修时可在IC2上接12V电源,测T2的2,3脚有无电压输出。 还有KA7500和TL494可以直接替换

保护电路是如何工作的

保护电路是如何工作的.能说说吗?我的电源电路和你的差不多,我查了电路其它都好的,就是不工作.我把494的4脚直接接地能开启,我想是不是PS-ON电路和保护电路有问题,请问这俩个电路是不是由LM339工作的啊?

检查TL494④脚在PS-ON信号为低电平时是否变为低电平,若无变化,是PS-ON处理电路故障,有变化,再检查TL494的14脚输出 ?5V(VREF),提供给保护电路、P.G产生电路和PS-ON处理电路,作为这些电路的工作电压。

TL494是AT或ATX电愿电路中长用的脉宽调制电路,在修理电愿时如怀疑TL494有故障,可使用静态测试法,既在不加市电的情况下,在TL494的12脚和7脚之间加+12V直流电压{此值可在6---36V之间},此时在14脚可测得+5V的基准电压,5脚有3V的锯齿波,频率为50KHZ左右,在8---11脚可以看到相位相差180度,幅度为1.5V,频率为30KHZ左右的方波脉冲。

PS-ON控制电路:

ATX电源最主要的特点就是,它不采用传统的市电开关来控制电源是否工作,而是采用“+5VSB、PS-ON”的组合来实现电源的开启和关闭,只要控制“PS-ON”信号电平的变化,就能控制电源的开启和关闭。电源中的S-ON控制电路接受PS-ON 信号的控制,当“PS-ON”小于1V伏时开启电源,大于4.5伏时关闭电源。主机箱面上的触发按钮开关(非锁定开关)控制主板的“电源监控部件”的输出状态,同时也可用程序来控制“电源监控件”的输出,如在WIN9X平台下,发出关机指令,使“PS-ON”变为+5V,ATX电源就自动关闭。

+5VSB、PS-ON、PW-OK控制信号

计算机电源维修 电脑电源工作原理及维修详解

ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。[www.t262.com]+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头(图1)9脚引出。PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头。8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。

此主题相关图片如下:

脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它电压。其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信

计算机电源维修 电脑电源工作原理及维修详解

号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。[www.t262.com)上述操作亦可作为选购ATX开关电源脱机通电验证的方法。

ATX电源一般不设市电开关,而采用TL494脉宽控制芯片和LM339比较放大器作为其控制的核心。其特点是引用TL494第4脚的死区控制功能,当辅助电源工作时,一路输出+5V到主板,另一路输出+12V供给TL494电源,经过该芯片内部稳压电路,由14脚输出+5V,并和13 15脚相接,再经分压电路到LM339电压比较器的反向端,其反向端电压约为

4.5V.当PS-ON为+5V时,LM339输出为高电平5V,TL494的8 11脚无输出脉冲,主变换电路截止,电源处于休眠状态。当PS-ON为0V时,输出为0V,TL494的8 11脚有输出脉冲,主变换电路开始工作。因此,我们不仅可以手动按下主机上的触发按钮开关使PS-ON为低电平启动电源,还可以通过程序或键盘等其他方式使PS-ON为低电平启动电源,从而使ATX电源具有远程控制功能。

电源输出排线功能一览表

Pin 1 2 3 4 5 6 7 8 9 10

导线颜色 橘黄 橘黄 黑色 红色 黑色 红色 黑色 灰色 紫色 黄色

功能 3.3V 提供 +3.3V 电源

3.3V 提供 +3.3V 电源 地线 5V 提供+5V电源 地线 5V 提供 +5V 电源 地线 Power OK电源正常工作 +5VSB 提供 +5V Stand by电源,供电源启动电路用 12V 提供 +12V 电源

Pin 11 12 13 14 15 16 17 18 19 20

导线颜色 橘黄 兰色 黑色 绿色 黑色 黑色 黑色 白色 红色 红色

功能 3.3V 提供 +3.3V 电源 -12V 提供 -12V 电源

地线 PS-ON 电源启动信号,低电平-电源开启,高电平-电源关闭

地线 地线 地线 -5V 提供-5V 电源 5V 提供 +5V 电源 5V 提供 +5V 电源 世纪之星ATX325电源 绿线不接黑线时4.8v 紫线5.1v 其他均为0v. 世纪之星ATX325电源 绿线不接黑线时4.8v 紫线5.1v 其他均为0v.

PS 14针对15针连接后测量数据如下:先行那一步查找,无烧毁的痕迹.求助高手帮助谢谢.

计算机电源维修 电脑电源工作原理及维修详解

1, 2, 11 针橙色 为 0 v

4, 6, 19, 20 针红色 为 +7 v

8 针灰色 为 +7 v

9 针紫色 为 +5v 正常

10针黄色 为 +1 v

12针兰色 为 -16 v

18针白色 为 -6.8 v

有可能PG产生电路中那个电阻开路或者电容有问题!还有就是测一下300V滤波电容两端电压是否有310V左右!如果低于300V,更换滤波电容.谢谢您的指点, 我修好了"世纪之星ATX325电源"

现把我的修理体会给大家分享.我测量了滤波电容两端电压有300V, 又测量了副电源的D9有+11.5V的输出, D50有+5V的输出, 紫线有+5VSB的正常电压. 短接了20针插座的14脚.LM339的13脚有+7.2V,TL494的14脚有+5V的输出, 此时我分析下来339与494也能工作只是没有+12V与+3.3V的输出其他电压多偏高可以断定副电源没有问题.

接下来重点查+12V与+3.3V的输出果然问题查出是两个二极管组成的三极管出了问题换了以后输出电压一切正常.装进电脑开机电脑可以使用了.哈哈还的谢谢清茶一杯的好帖.不过还要问一下二极管组成的三极管在LWT2005型ATX开关电路中是那个遍号的三极管.谢谢了!!!

开机风扇只转一下就停了,无电压输出,请问如何修

修一个ATX电源脱机测量,用硬盘做负载,电压都正常,装上机,开机风扇只转一下就停了,无电压输出,请问如何修

电源带不起负荷,先检查一下电源里面的两个大电容。[www.t262.com)不行就是TL494,把它换了。

注意:两个方面,一电源本身的问题,[先借一个试试看]另一个机内有电源短路的故障,[留下cpu,内存显卡其它全卸下开机试试看能点亮吗]如可以把其它的逐一插上看是那一件出毛病.如点不亮,那问题就在这里了,留下主版,全拿到别的机上试,如都好就是主板.细心点一定能找到问题.

计算机电源接口讲义与改制

“ATX电源”改成“AT电源”

目前,家用计算机仍然是以ATX为主流,未来BTX标准也已经出台。然而,与2GHz主频的P4相比,AT架构(586时代)的计算机虽然在人们的印象中早以沦落成了垃圾,(没有了印象)但其在库房管理、酒店记帐打单和制作路由器共

计算机电源维修 电脑电源工作原理及维修详解

享网络等方面还具有一定的利用价值。(www.t262.com)只是配件好寻电源难觅,就让我们把触手可及的ATX电源改造成AT电源。

ATX电源按其接口和输出功率不同分别适用于PⅢ和P4架构中。我们知道P4架构(i 845)所采用的VRM(处理器供电调节模块)版本是VRM9.0版(i865/i875芯片组VRM10.0版),其输出电压为1.10V—1.85V,输出电流则要达到70A。如此强大的电力要求完全是为了应付P4处理器那高达3GHz的主频和AGP8X显示卡这两个堪称耗电大户的部件。原PⅢ电源盒的功率储备及所采用具有防呆设计的20针供电插头已经无法满足P4 版计算机的供电要求,这就是我们看到的300W 功率的P4电源盒额外又附加有两个补助供电插头的缘故。从(图一)示出的P4电源盒供电插头可以看出,所增加的两个补助供电插头分别用于加强5V、3.3V和12V的供电,而20针供电插头和其它的供电插头引脚定义均与PⅢ电源盒的供电插针一致。也就是说P4电源盒兼容PⅢ架构,不存在任何的技术问题,且功率余量充足。但若要将ATX电源安装到AT架构中,则必需要对电源插针进行改造。同时,我们有必要强调一下ATX电源中下列三个引脚的用途。

(一)PS—ON引脚。准确的说,这是一个由主板上的逻辑电路构成的高低电平保持电路。1995年IBM发布ATX 1.0规范以后,以及Windows 3.2/95等视窗类操作系统的逐渐流行与版本的不断升级,一种利用操作系统、通过软件向主板发出一个持续稳定的高5V或者低时可达到0V这样的一组指令,最终控制着主板上20针供电插座中PS—ON引脚的电位。低电平时电源盒输出各组电压令计算机运行,高电平时电源盒只有5VSB插针中有5V的待机电压输出,其它引脚无电压输出、计算机处于关闭状态,当然这只是一种软关闭,轻触电源开关、利用键盘或者网络都可以随时开启计算机,其相关的电路原理参见(图二)。而在AT架构的DOS时代使用计算机(那时叫微机),关机似乎很随意,一般是使用完毕后退到根目录下,按下电源开关,显示器和主机就会完全的脱离供电电网。由此看出AT电源实现的是物理切断,与当今的操作系统不能亲密的配合,这也是它淘汰的直接原因。

(二)PW—OK引脚。电源系统供电的正常与否,不仅仅只是影响到系统运行的稳定性,更关系着计算机内部硬件的安全。鉴于这种情况IBM最初在电源盒中设计了“电源准备好”这个引脚(又称Power_Goog)。电源盒在得电的瞬间即系统启动之前,电源部分首先要进行内部检测,待测试通过以及电源电压稳定之后,便会给主板发送一个连续的接近5V的电位信号,通知主板可以启动了。当然,这个测试过程极为短暂一般会在100ms—500ms之间完成。如果电源供给部分超载并发生故障,这个信号不能有效的保持或者消失,计算机系统将会自动复位或者被完全的关闭。我们在维修计算机的时候,经常遇见电源接通,处理器风扇和硬盘在运行,但显示器黑屏的现象,这一般都是系统硬件故障而造成该信号丢失所致。不论是AT电源还是ATX电源, PW—OK引脚都存在,且逻辑功能相同,这是硬件系统运行的安全保证。

(三)5VSB引脚。又称5V standby(备用)电源。ATX电源盒中唯一一个不受电源开关控制的电源。该备用电源在电网供电保证的前提下将始终向主板执行开机的电路和部分设备提供有限的电力,配合PS—NO引脚,可以完成键盘开机、网络远程唤醒。而且,现在的操作系统和主板的BIOS都支持高级电源管理(APM)

计算机电源维修 电脑电源工作原理及维修详解

功能,通过ACPI规范(高级电源接口)实现系统挂起,也可以让计算机按照我们预先的设置,随着系统等待时间的延长而逐步进入到S1—S5几种省电模式中。[www.t262.com)

与ATX电源插针对比,(图三)示出的AT电源12根主供电插针中,不含有

3.3V供电端子,也少了5VSB备用电源端子,而且,电源开关设计在电网供电的一端。外形相同的P8、P9两组插头因不完善的防呆设计,必须要黑线对黑线并排地插入到AT架构的主板中。充分了解了ATX电源与AT电源之间的输出差异,再实施改造自然是手到擒来。首先,要从已经损坏的AT电源盒的PCB板上焊下P8、P9两组电源插头,并参照(图三)给出的接线规则一一对应接入。值得注意的是:原ATX电源20针插头要保留,且仍然使用AT机箱中的具有自锁功能的电源开关,舍去一臂,另一臂的两棵线分别接在ATX电源的14号线(绿色)和任意黑色线上,做好绝缘(最好套入热缩管)。拥有这样一个AT架构和ATX(含PⅢ、P4)架构都能胜任的电源盒,DIY过程中一切因电源盒不兼容而引发的的装配问题都会迎刃而解。

《 {改AT电源为准ATX电源} 》

{ 比较ATX电源和AT电源,ATX电源有AT电源的所有电压信号,另外ATX电源比AT电源多了+3.3V供电,+5VSB非受控电源,一旦ATX电源上电,+5VSB电压信号就有输出,它主要供电脑主板上的一部分电路在计算机关机状态下要保持工作的芯片使用,完成电脑的唤醒功能。另外ATX电源还有一个电源控制信号PS-ON,当PS-ON为低电平时ATX电源启动,输出+5V、+12V、-5V、-12V等电源为电压,当PS-ON为高电平时,ATX电源关闭。PS-ON信号由主板上的控制芯片输出。如果我们为AT电源增加一个不受控的+5V电源就可以把它改造成为一个准ATX电源,之所以称它为准ATX电源是因为它不能提供+3.3V电源供CPU使用。

要使用这个准ATX电源还必须有两个条件:一是你的主板是AT结构的,但它同时又可以使用ATX电源,即双接口主板。因为ATX主板的电源接口中的+3.3V电源是专供CPU使用的,而具有AT和ATX双接口的主板,厂家在设计时因为要兼顾AT电源和ATX电源,一般在主板上都设计成由+5V电源经主板上的开关电源降压后给CPU供电。所以主板上的ATX接口中的+3.3V一般都没有使用。另外这类主板上的AT接口和ATX接口中的相同电源引脚一般都是连通的。我1998年购买的ATC-5000主板就是这样的,另外ASUS的TX-97也如此。我现在使用的主板是QL729,我的改造就是在它上面实现的。你可以找个万用表用电阻挡具体测量一下:如果+3.3V电压引脚对地(GND)电阻值为无穷大,那么恭喜你,你的主板完全可以进行改造。二是你的AT电源的控制芯片(PWM)是494集成电路,具体可能是UPC494或DBL494等,一般情况下494集成电路的工作电源是与交流电源隔离的,而采用UC3842的电源是没有与交流电源隔离的,不能采用下面的方法来改造。494集成电路的第4脚是死区时间控制引脚,当4脚电压高于1.0V时,494集成电路的PWM波输出中断,相应的AT电源的各路电压都无输出了;当4脚的电压低于1.0V时,494集电路输出PWM波,AT电源输出各路电压。而主板上的电源接口(ATX)中的第14引脚为电源控制信号PS-ON,它是由主板上的控制芯片发出的,当PS-ON电压小于1.0V时,电源开启;当PS-ON电压大于4.5V时,电源关闭。比较第4引脚和PS-ON功能的对应关系,可以发现把

计算机电源维修 电脑电源工作原理及维修详解

PS-ON直接和494集成电路的4脚相连,就可以实现由主板控制电源的启动和关闭。(www.t262.com)

下面就来具体进行改造:

1.先准备一个5V稳压电源,最好是小型开关电源,能提供5W功率更好,ATX 1.0标准要求+5VSB电源能提供100mA电流,ATX 2.0标准要求+5VSB能提供720mA电流。打开机箱,把这个电源安放在AT电源盒中,其电源引线(AC220V)接到AT电源的引线上,使它受AT电源开关的控制。+5VSB电源的地线与AT电源的地线焊到一起,使两个电源共地。+5VSB电源另一端接ATX接口的第9脚(+5VSB)。

2.从494集成电路的第4脚引出一条信号线作为PS-ON信号,接到ATX接口第14引脚(PS-ON)。具体的接线如^04030202a^示:

经过这两项改造后,你的双接口主板就可以使用准ATX电源了。还有一个重要的步骤:把主板上的ATX电源开关插座与一个常开的开关连接起来,由它来控制准ATX电源的开启,并把它固定在机箱的面板上。按下AT电源的开关,电脑进入待机状态,再按加装的ATX电源开关,电脑就启动了。现在你就可以使用这个准ATX电源了。这个电源具有ATX电源的所有特性。如果你对电子技术不是很了解,最好找一个懂行的电器维修人员帮你改造。另外因为要与交流电源打交道,提醒你千万要注意安全,祝你能顺利改造成功。}

假负载使用说明书

⑴假负载的作用与用途:它主要是用来测CPU的各个点与电压是否正常,正常之后才能上真的CPU(这样就避免了在维修 主板的过程中把CPU烧掉)。他也可以用来测CPU通向北桥或其他通道的64根数据线和32根地址线是否正常,是维修 主板必备的工具。

⑵它的使用方法与步骤:上真CPU前必须要做的六个检测步骤(前提是上假负载,通电后)

测假负载上的核心电压是否正常。测假负载上的复位[RESET#]与电压是否正常。测假负载上的时钟与电压是否正常。(用示波器测假负载上的时钟是否有波,有波表示 正常)测假负载上的PG信号电压是否正常。测假负载上的1V参考电压是否正常。测主板上的核心供电的下管C极是否有三波(用示波器测下管C看是否有三波。可参照核心供电)

注:当以上均正常之后就可以上真的CPU了。

⑶各种型号的假负载图解:1.P4 478的假负载(C4.P4)图解(参照478的正面脚位图)。核心电压:图标 VCC 图中位置 AF21 参考电压 1.75V。复位:图标 RESET# 图中位置 AB25参考电压1.75V。时钟:图标 BCLK[0] BCLK[1] 图中位置 AF22 AF23参考电压 1.75V PG信号:图标 PWRGOOD图中位置AB23 参考电压

计算机电源维修 电脑电源工作原理及维修详解

1.75V 1V参考:图标GTLREF 图中位置 AA21 F20 AA6 F6参考电压 1. V(注:四个当中有一个为1V,均为正常)64根数据线:图标 D#[0]→D#[63] 图中位置 B21→AA24参考电压 1.75V(他们的对地阻值与对地电压均相同)32根地址线:图标 A#[03]→A#[35] 图中位置 K2→AB1参考电压 1.75V(注:他们的对地阻值与对地电压均相同,A#32、A#33、A#34、A#35未开发)VID信号:图标 VID0→VID4图中位置 AE5→AE1参考电压无(注:VID0→VID1→VID3→VID4需要连接在一起的都接地,VID2不接地)感应信号:图标 VCC+VCCSENSE图中位置B7+A5参考电压无(注:VCC+VCCSENSE连接在一起才能产生感应信号)⒉SOCKET370的假负载图解(参照370的正面引脚对照图)核心电压:图标 PLLI 图中位置 W33 参考电压 2V 复位:图标 RESET 图中位置 X4 、AH4参考电压1.5V到2V之间(如果有一组没复位可以用线将X4与AH4连接起来)主时钟:图标BCLK图中位置 W37参考电压无(用示波器测假负载上的时钟是否有波,有波表示正常66M、100M由时钟IC发出)辅助时钟:图标PCICLK图中位置J33 参考电压无(用示波器测假负载上的时钟是否有波,有波表示正常14.318M、16M由时钟IC发出)PG信号:图标 PWRGD图中位置AK26 参考电压只要有高电压就正常(低电压=无电压、有电压=高电压)VTT参考电压:图标V-1.5、V2.5 图中位置 AD

36、Z36 参考电压 1.5 V、2.5V(注:作用为HOST总线数据线地址线供电的)1V参考:图标VREF 图中位置 E33参考电压 1V(注:太低了不开机)64根数据线:图标 HD0→HD63图中位置 W1→F16参考电压无(他们的对地阻值与对地电压均相同)32根地址线:图标 HA4→HA31 图中位置 AH12→AD41参考电压无(他们的对地阻值与对地电压均相同,有3根未开发)VID信号:图标无图中位置 AM34、AM36、AL37、AJ37、AK36参考电压无(把他们均连接在一起)⒊AMD462假负载图解(参照462的正面对照图)

核心电压:图标 COREF 图中位置 AG11 参考电压 1.6V复位:图标PWROK图中位置 AG3参考电压1.5-1.6V时钟:图标 BCLK 图中位置 AN19、AL19、AN17、AL17参考电压无(用示波器测假负载上的时钟是否有波,有波表示正常)PG信号:图标 PWROK图中位置AE3 参考电压只要有高电压就正常CPU参考电压:图标ZM 图中位置 AC5参考电压1.6V0.8V参考电压:图标VREF 图中位置 W5参考电压0.8V(由1.6V经两个电阻分压得来)

2.5V参考电压:图标PICD# 图中位置 N5参考电压2.5V(由电源IC经三极管得来)

64根数据线:图标 SD#0 图中位置 AA35参考电压1.6V(他们的对地阻值与对地电压均相同)

32根地址线:图标 SA0#0→SA0#15、SA1#0→SA#14 图中位置 J1→A5、AG29→AN31参考电压无(他们的对地阻值与对地电压均相同)

VID信号:图标 VID0→VID4图中位置 L1→J7参考电压 VID0+VID2+VID4+VSS产生1.6V核心电压

注:以上均属于个假负载的测量参考图解,如果按以上的测量都正常后就可上真的CPU

计算机电源维修 电脑电源工作原理及维修详解

ATX电源典型故障诊断

采用ATX电源的计算机系统出了故障,要从CMOS设置、Windows中ACPI的设置及电源和主板等几个方面进行全面的分析。[www.t262.com]硬件方面,为了区别故障在负载上还是在电源本身,可以将电源拆卸下来,用一台报废的设备(如硬盘等)作假负载,以免出现空载保护。在PS-ON信号线(绿色)与地线之间接入一只100~150Ω的电阻,使该信号变为低电平。如果电源可以工作,说明故障在主板或电源按钮(Power Button),否则故障在电源自身,只有更换电源自身,只有更换电源了。

根据计算机维修中“先软后硬”的原则,首先要检查BIOS设置是否正确,排除因设置不当造成的假故障;第二步,检查ATX电源中辅助电源和主电源是否正常;第三步,检查主板电源监控电路是否正常。下面根据故障的不同表现,分别介绍分析和处理的方法。

故障一:无法开机

用万用表测量+5VSB,如果该电压值正常且稳定,而主板反馈信号PS-ON始终为高电平,则可能是主板上的开机电路损坏,或电源启闭按钮损坏;如果上述两者均为正常而主电源仍无输出,则可能是开关电源主回路损坏,或因负载存在短路或空载而进入保护状态。

故障二: 无法关机

关不了主机,有以下几种现象和原因:

①BIOS中设定关机时有一定的延时时间(Delay Time),关机时需要按住电源按钮,保持数秒钟,才能将机器关闭。不能实现瞬间关闭,是正常现象,不是故障。

②电源按钮失灵。这种情况下,不仅不能关机,开机也会有问题。 ③主板上的电源监控电路故障,PS-ON信号恒为高电平。

④关不了键盘电源(键盘的Num Lock指示灯在主机关闭后是亮的)。有些机器允许使用密码通过键盘开机,键盘上的Num Lock灯在关机后仍亮着,是正常现象。

⑤关不了显示器。如果显示卡或显示器中有一个部分不支持DPMS(显示器电源管理系统)规范,在主机关闭后显示器指示灯亮,屏幕上仍有白色光栅,也属正常现象。

故障三:自行开机

自行开机故障有以下两类:

第一类在BIOS设置中将定时开机功能设为“Enabled”,这样机器会在所设定的某个日期的某个时刻,或每天的某个时刻自动开机。某些机器的BIOS设置

计算机电源维修 电脑电源工作原理及维修详解

项中具有来电自动开机功能设置,如果选择了来电开机,则在插上交流电源后,机器便会启动。(www.t262.com]应该说,出现这些问题,并不是真正的故障,而是用户不了解机器所具有的这些功能。

第二类是BIOS中关闭了定时开机和来电自动开机功能,机器只要接通交流电源还会自行开机,这无疑是硬件故障了。硬件故障有3种原因:第1种是电源本身的抗干扰能力较差,交流电源接通瞬间产生的干扰使其主回路开始工作;第2种是+5VSB电压低,使主板送不出应有的高电平,而总是为低电平,这样机器不仅会自行开机,还会关不掉;第3种是来自主板的PS-ON信号质量较差,特别在通电瞬间,该信号由低电平变为高电平的延时过长,直到主电源准备好了以后,该信号仍未变为高,使ATX电源主回路误导通。

故障四:休眠与唤醒功能异常

休眠与唤醒功能异常表现为:不能进入休眠状态,或休眠后不能唤醒。出现这些问题时,首先要检查硬件的连接(包括休眠开关的连接是否正确,开关是否失灵等)和PS-ON信号的电压值。进入休眠状态时,PS-ON信号应为低电平(0.8V以下);唤醒后,PS-ON信号应为高电平(2.2V以上)。如果PS-ON信号正常,而休眠和唤醒功能仍不正常,则为ATX电源故障。

需要提醒读者,进入夏季后,为了预防雷击,对ATX结构的计算机,如果用户长时间不使用,又不想进行远程控制,建议将交流输入线拔下,以切断交流输入。

故障五:零部件异常

有经验的维修人员,在遇到主板、内存、CPU、板卡、硬盘等部件工作异常或损坏故障时,通常要先测量电源电压。正常的工作电压是电脑可靠工作的基本保证,而很多莫名其妙的故障都是电源惹的祸。

一台机器发生了找不到硬盘的故障,通过对比试验,确信硬盘是好的。判断为主板上的IDE接口损坏,于是找来老的多功能卡,插在主板的空闲ISA插槽,连上硬盘试验,仍然找不到硬盘。测量电源电压,+12V电压只有10V左右。在这样低的供电电压下,硬盘达不到额定转速,当然不能工作。换一台ATX电源,故障排除。

DIYer切记,如果发生了部件损坏的情况,要在确信电源没有问题后,才能换上新的部件。否则,可能会犯“被同一根绳子绊倒两次”的愚蠢错.

电脑电源维修经验

电脑电源是电脑系统中比较重要的部件。它长期工作在高压,高温的环境中,电压的波动,电流冲击、各种电源干扰都有可能造成损坏。所以和其他元器件比较起来是容易损坏的部件。进入夏季,天气炎热、电压不稳导致损坏了很多,在维修过程中发现了几点规律,主要有以下几种情况:

计算机电源维修 电脑电源工作原理及维修详解

其一、故障现象是:正常使用并关机后,再开机时,电脑无法启动。(www.t262.com]这种情况多为电压波动过大,瞬间电压过高或者过低造成,这种情况可以先试着把电脑与电源线断开,等几秒钟,一般有可能恢复,因为电源本身有保护功能,当电压波动幅度超过电源本身负载能力时,就进入保护状态。这时就需要断开电源,等一会就会好的。但是也不全是这样,有一部分就不能进入保护状态,这样就会损坏,维修过程中发现主要是以电源滤波电容击穿或者快速整流二极管损坏的居多。

其二、故障现象是使用过程中主机突然断电,再重新启动无任何反应。送修后手摸机箱感觉很热,打开机箱发现灰尘较多,电源风扇转动不灵活,分析原因可能是散热不良造成电源内部过热,元件烧毁。经检查电源触发时风扇有反应,然后马上断电,分析是电源后级存在严重短路,经检查是快恢复二极管因过热造成短路,更换后工作正常。

其三、电脑有的时候无法启动,有的时候反复按复位键则可启动,有时正常工作时也突然重新启动。这种故障是与辅助电源电路有关。打开电源盒用万用表测此时+5V SB待机电压,仅为4V左右,断电检查发现辅助电源稳压集成块7805输入端滤波电容容量变小,看来也是长时间通电后受热导致容量下降所致。换上新的电解电容后,故障排除。

经过多台电源维修发现出故障的电源多为使用完毕后,只由操作系统进行了关机而未拔掉电源插头,而那些长时间一直工作着的电脑反而不容易出现故障。原因是虽然电脑已经软件关机,但是电源内部副电源一直工作。虽然只有一部分元件工作发热,但因电源风扇不工作,热量不易散发,所以反而易出故障。所以大家在电脑不用的时候最好把电源插头拔下,确保安全。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多