分享

稀有气体化合物

 昵称36393204 2017-04-22

1 介绍

稀有气体化合物指含有 稀有气体 元素的 化合物。由于稀有气体元素原子外层为闭壳 结构,化学性质不活泼,因此它们化合物的制备颇费了一些周折。

广义上看,稀有气体化合物可以包括稀有气体元素形成的众多 包合物和 水合物,但现在一般认为1962年得的 六氟合铂酸氙是最早制得的稀有气体化合物,因为它的成功合成不仅意味着稀有气体元素有可能形成化合物,而且极大推动了对稀有气体化合物的系统研究。 氙的众多简单化合物也是在此不久之后发现的。

2 制备历史

编辑

稀有气体是第0族的元素,共包括 氦、 氖、 氩、 氪、氙和 氡、以及最新合成的 Uuo共七个。所有的稀有气体元素外层s和p轨道都填充满了电子,氦有两个外层电子,其它的都为8个。它们的 电离能很高, 电子亲合能几乎为零,生成化合物的倾向很小。因此直到20世纪, 化学家都认为稀有气体化合物不存在,并将这些元素称为“惰性气体”。

然而,莱纳斯·鲍林在1933年时预测,原子序数较大的稀有气体元素有可能与 氟和 氧生成化合物。他预言了六氟化氪和 六氟化氙( Xe F6)的存在,提出八氟化氙可能是个不稳定的化合物,以及 氙酸会以 高氙酸盐的形式成盐。

现在看来,这些预测相当准确,只是八氟化氙这个化合物不仅在 热力学不稳定,而且在 动力学上也不稳定。2006年时仍未制得。

相比而言,原子序数较大的稀有气体元素具有更多的电子层,因此内层电子对最外层电子的 屏蔽效应致使其电离能减小,可能小到能与 电负性强的元素(氟和氧)形成稳定化合物的地步。

在1962年以前,唯一可以分离出来的稀有气体化合物都是包合物,包括水合包合物。其它则是只有在光谱中才可观测到的 配位化合物。

3 化合物

编辑

氦化合物

尽管一些理论上一些氦化合物在低温高压下能稳定存在,但还没有实验能证明这一点。

氦合氢离子,化学式为HeH+,是一个带正电的 离子, 键级为1,可以存在与气态中,通过 光谱观测到。它首次发现于1925年,通过 质子和 氦原子在气相中反应制得。它是已知最强的酸,质子亲和能为177.8 kJ/mol。这种离子也被称为氦氢分子离子。有人认为,这种物质可以存在于自然 星际物质中。这是最简单的异核离子,可以与同核的氢分子离子(H2 +)相比较。与H2 +不同的是,它有一个永久的键偶极矩,使它更容易表现出 光谱特征。

不同于氦合氢离子,氢和氦构成的中性分子(HeH)在一般情况下(基态)不稳定,但它的 激发态可以作为准分子存在,20世纪80年代中期首次在光谱中观测到。

科学家们有三种制得氦化合物的构想

一是制得TF2 离子,利用T的β衰变制得HeF2

TF2 (CF3SO2 )→HeF2+β

第二种是用热中子照射LiF发生核反应

LiF+ n→ He+T

第三种是直接用α粒子轰击固态氟,制得HeF2

氖化合物

氖化合物理论上存在的可能性依然不确定,且氖的 水合物很不稳定。

氩化合物

氩已知唯一的化合物为氟氩化氢,氟氩化氢是一群由马库·拉萨能领导的 芬兰 化学家发现的

这群芬兰化学家是将 氩气和 氟化氢在 碘化铯表面冷冻至-265°C,这使氩气结成冰,然后再用大量的 紫外线照射这氩冰和氟化氢的 混合物,这使得氩和 氟化氢反应产生氩氟化氢。经过红外光谱术分析后,他们发现 氩原子已经和 氟原子、 氢原子产生 化学键,但该化学键非常的弱,只要温度高于-256°C它就会再分解为 氩和 氟化氢。

氪化合物

氪与氟反应得到 二氟化氪。过去有报道称“四氟化氪”(实际上是二氟化氪)与水在-30℃时反应得到2-3%的“氪酸”KrO ·xH O,该溶液有氧化性,能将 碘离子氧化为碘单质,与 氢氧化钡溶液反应得到产率7%的白色晶体“氪酸钡”。这些报道可信度不高,后来也未能重现。在含放射性同位素 二氧化硒衰变产物中用光谱检测到Kr-O键的存在,还没有方法合成氧化氪。

氙化合物

氙在稀有气体元素中是化合物最多的

1962年,巴特列在研究无机 氟化物时,发现强氧化性的 六氟化铂可将 O2氧化为 O2+。由于O2到O2+的电离能(1165 kJ mol)与Xe到Xe的电离能相差不大(1170 kJ mol),因此他尝试用PtF6氧化Xe。结果反应得到了橙黄色的 固体。巴特利特认为它是 六氟合铂酸氙(Xe[PtF6])。 这是第一个制得的稀有气体化合物。后期的实验证明该化合物 化学式并非如此简单,包括XeFPtF6和XeFPt2F11。

在成功合成六氟合铂酸氙,化学家又尝试用类似的六氟化钌来氧化氙。结果发现除了生成Xe(RuF6)x外,还存在有氙和氟气直接生成二元氙氟化物的副反应。因此克拉森(Howard Claassen)通过让氙和氟在高温下反应,成功合成了 四氟化氙。

合成的稀有气体化合物绝大多数都是氙的化合物,其中比较重要的包括:

氙氟化物—— XeF2、XeF4、XeF6 氙的氟氧化物——XeOF2、 XeOF4、XeO2F2、XeO3F2、XeO2F4 氙 氧化物——XeO3、XeO4 二氟化氙可由Xe和F2混合气暴露在 阳光下制得。但有趣的是,1960年代之前的半个世纪中,却没有人发现仅仅混合这两种气体就有可能发生反应。

制得了一大种类形式为XeOxY2的稀有气体化合物,其中x = 1、2、3,Y是任何电负性强的基团,比如CF3、N(SO2F)2或OTeF5。这类化合物范围相当广,可以有上千个之多,并且涉及氙和氧、氮、碳甚至金之间的 化学键。一同报道的还有高氙酸、一些稀有气体卤化物和配离子。化合物Xe2Sb2F11中含有目前已知最长的化学键,其中的Xe–Xe键长308.71 pm。

氡化合物

氡可与氟反应生成 二氟化氡,在固态时会发出黄色光。它与 氙的相应化合物类似,但更稳定,更不易挥发。

包合物

稀有气体包合物在近几十年曾被广泛研究过,它们由于有可能用于储存稀有气体而引起了人们的兴趣。在这些包合物中,稀有气体原子基本上都是被包容在笼状的主体分子中,即主体分子构成笼状晶格,将稀有气体包藏在笼中。能否形成包合物主要决定于主体分子和客体分子间的几何因素是否合适。例如,氩、氪和氙可以与β- 氢醌形成包合物,氦和氖却因为体积太小而无法包合在内。

稀有气体包合物中,研究较多的主体分子是 水、 氢醌、 苯酚和氟代苯酚。

包合物可以用来从稀有气体中分离出He和Ne,及运输Ar、Kr和Xe。此类化合物亦可用作 放射源,Kr的包合物是 β粒子的安全来源,Xe的包合物则是 γ射线的来源。

配位化合物

曾经一度认为诸如Ar·BF3之类的配位化合物可在低温下存在,但始终未经实验验证。并且,有报道称化合物WHe2和HgHe2可由电子轰击制得。然而最近的研究表明,它们并不是真正的化合物,He很有可能只是被金属表面吸附。

水合物

水合物可由将稀有气体压入水中制得。有理论认为,强极性的 水分子使稀有气体原子产生诱导偶极,产生偶极-偶极作用力。因此原子序数较大的稀有气体所形成的水合物,如Xe·6H2O,比原子序数小的稀有气体元素形成的要更加稳定。但2010年来对于这些化合物是否存在产生了疑问。

内嵌富勒烯型化合物

稀有气体原子可以被包覆在 富勒烯分子中,形成多种多样的内嵌富勒烯型化合物。它们首先在 1993年合成。用C60与He或Ne在3bar压力下反应,得到的大约650000个富勒烯分子中,只有一个可以与稀有气体原子形成包合物He@C60或Ne@C60;压力增大至3000bar时, 产率增至0.1%。

4 应用

编辑

稀有气体化合物主要被用作 氧化剂。这一类型的试剂包括: 氙酸、 高氙酸盐、 三氧化氙。它们被称为所谓“绿色氧化剂”,所参与的反应中,最终还原产物是气态的稀有气体,不会干扰反应,而且比较容易分离。受氧化性影响,氙氟化物容易放出氟,是有机化学中比较新颖高效的氟化试剂,以 二氟化氙的用途最广。氙元素稳定的盐中氟和氙的质量分数非常高,比如七氟合氙(VI)酸 四氟铵(NF XeF )以及类似的(NF ) XeF 已经被用作火箭推进剂中的高能氧化剂。

由于氪和氙的放射性 核素不易储存,因此常将它们以相应化合物的形式来存放及使用。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多