配色: 字号:
浅谈超重低音音箱的制作
2017-04-27 | 阅:  转:  |  分享 
  
浅谈超重低音音箱的制作

超重低音音箱,俗称低音炮,对营造震撼的气势效果具有非常重要的作用.大多数牌号以AV功放加五只音箱与低音炮组成套餐形式推销家庭影院产品中,低音炮已经是必不可少的配置了,实际上,设计规范、制作精湛、效果出色的低音炮.其在家庭影院系统音频重放中的效果相当迷人.只可惜市场上的低音炮效果出众者价位令一般人难以接受.价位实惠者效果却难以令人接受,世间的事往往就是不能令人如意.不过,善于动手的影音爱好者却“自已动手,丰衣足食”,基于此,本文拟就低音炮的设计原理做简单的介绍,供有兴趣音参考。一般而言,从低音炮的构成来讲,低音也分有源与无源二大类,所谓有源低音炮指包含功率放大器的低音炮,其中电路部分除功率放大外.通常还具有音频频率滤波(滤去低音以上的音频频率成分),相位调整。音量调整等单元;而无源低音炮即与一般音箱无二,由单元与无源功率分频器组成,其中分频器是一低通滤波器而已。使其重放频率范围仅为超重低音音频。下面就低音炮的-大单元音箱,功率放大分别做以介绍。

一、低音炮箱体设计原理和分类就低音炮设计原理,可大致分三大类,即密闭式音箱、倒相式音箱以及带通滤波式音箱1、密闭式音箱顾名思义,这种音箱箱体是完全封闭的,与一般的所谓闭箱结构上一样,见图1。密闭式音箱的特点是结构简单,瞬态响应比较好.即听感深沉、清晰。不足是,在相同的体积下,与其它类型的音箱相比,其低频下潜截止频率要高于其他音箱,因此,如果要获得更低的低频下潜频率,通常需要较大的箱体容积并选用口径较大的喇叭单元,而且音箱的效率即灵敏度要低于其他类型音箱。在箱体容积设计方面,有一个工程设计数据供参考.当喇叭单元的谐振频率Fs低于50Hz时,箱体容积最好能够大于1.4立升。Fs大于50Hz时,箱体容积最好能够大于2立升。闭箱在制作、调校时通常还需要在箱体内填充大量吸音棉,材料以玻璃纤维,长纤维羊毛为主,能够改善音箱的柔顺性,也可达到等效增加箱体容积的效果,理论上达40%,实用上可以按等效增加容积15%-24%进行计算,相当于减少箱体的容积。另外,填充吸音棉,也可提高音箱的效率,正确的填充量,最大可提高音箱效率达15%,吸音棉的多少通常需要通过反复试听来决定填充量的多少,以声音不浑浊(量偏少),沉闷(量过多)为原则,其它类型音箱也是如此。对于闭箱型低音炮,对单元的要求相对其它类型音箱要严格一些,其中希望Fs以低于40Hz为好,Qts应该在0.3-0.6,Fs/Qts≤50。除此之外单元口径最好大于20cm,而且属于长冲程设讨。2、倒相式音箱是市场上最多的一类音箱,音箱上设计有倒相管,即所谓的低音反射式设计,见图2。倒相式音箱,在单元工作于谐振频率Fs以上锥盆位移相对较小,因而功率承受能力较高,谐振失真较小,但在谐振频率以下,锥盆位移量大幅度增加,谐振失真增加,在相同容积与单元条件下,倒相式音箱可以获得较闭箱更低的低频下潜截止频率。另外,理论上倒相式音箱的效率可以做到大于闭箱约3dB。当然,倒相式音箱包括倒相管的设计、制作、调校难度要大于闭箱。倒相式音箱内部也需要填充适量的吸音棉,通常比闭箱少一些。在单元选取上,Fs以低干45Hz为好,Qts应该小于0.5,而Fs/Qts取值应该在100左右为好,单元口径应该大于17cm,为获得较大的声压功率,与闭箱一样,宜选用长冲程设计的单元。3、带通滤波式音箱这种音箱比较少见,参见图3、图4,由图可以看出,它是在闭箱与倒相式音箱的基础上发展而来的.既有闭箱的设计痕迹,也有倒相式音箱的特征,其中图3所示音箱也有称四阶带通式音箱,图4所示音箱可以称之为六阶带通式音箱。A、四阶带通式音箱在闭箱腔内增加了一个开口腔,其中一部分工作于闭箱模式,另一部分工作于倒相式模式,因此,这种音箱既具有闭箱的优势,也具备倒相式音箱的特点,它的效率高于纯粹的闭箱,低频下潜截止频率与倒相式音箱相近,可以用较小口径的单元获得较低下潜截止频率。另外,它的带通频率可以调整,因而分频器可以简单化,因为音箱本身就相当于自然分频器。在单元选取上,原则上与闭箱相似,但由于效率略高于闭箱,而且锥盆位移量比较小,可以使用较小口径、短冲程的单元。B、六阶带通式音箱在四阶带通式音箱的闭箱部分腔内又增加了一个开口腔,即有二个开口腔,其中一个开口腔工作于较低的频率,另一个工作于较高的频率,二者合成具有一定带宽的频率响应,与上述四阶带通式音箱相比,效率与带宽的可调性更加灵活,而且可以利用更小口径的单元获得更低、更深沉的低音效果,同时、锥盆位移量更小、谐振失真更低。在单元选取上,基本上与倒相式音箱相近,但Qts该掌握在0.4左右比较好,单元口径基本上没有严格的要求,如果要获得高声压功率、低失真输出,单元口径当然还是尽量大一些比较好。由于带通式音箱的倒相孔在工作时的气流、声压通常比较大,尤其是在大动态、超低频信号时,因此,不论是四阶带通式音箱,还是六阶带通式音箱,倒相管在可能的情况下,应该尽量大一些,以避免在工作时出现气流声。在箱体设计上,其容积的取值在实际应用中并不是依据理论计算而来的,尤其是商品箱,主要是以美观、尺寸的协调方面为准,电声指标靠倒相管、吸音棉的调整来达到最佳水准即可,当然,其容积越接近工程计算值,性能越能达到最好的水准。另外,在箱体制作上,内部加强筋的作用不容忽视,在箱体接缝处以及大板中间加一些加强筋利于降低音箱的谐振,所以箱体重一些总是有好处的。

二、电路的构成低音炮在家庭影院系统中得到广泛的应用,其中的原因在于影片音频解码还原过程中获得了一个超重低音信号,不论在模拟杜比系统还是现今非常流行的数字环绕系统中,既然有超重低音信号,必然就需要专门的音箱来重放。就低音炮电路构成来分析,一般由前级放大、低通滤波、相位调整、功率放大、保护以及电源等部分组成,就其作用来说,前级放大就是将AV功放输出的超重低音信号进一步放大到足以驱动功率放大部分满功率输出的幅度,因为各个牌号的AV功放提供的超重低音信号电压不一样,一般从0.3-1伏不等,所以前级放大还是必要的,前级电路还有一个重要的作用就是起隔离缓冲的意义,因为各个牌号的功放输出的超重低音信号存在差异,有的厂家在设计上偷料,致使其输出内阻很高,如果直接驱动低音炮的功率放大单元,有可能效果非常不好;低通滤波是低音炮内电路部分一个比较重要的单元,它的作用就是将混杂在功放输出的超重低音信号中的低频以上的信号进一步滤除,一般设计将80-180Hz(很多高档产品将滤波器低端截止频率设计成连续可调的),如果属于固定频率的滤波器,一般取值大约在110-150Hz左右,过低音箱容易产生混降声,过高,容易混入人耳可辨的音乐信号;用于各个牌号的AV功放输出的超重低音信号是反相还是正相没有统一规定,因而,相位调整就是在低音炮摆放时根据系统连接的需要将低音炮正相或反相使用,视效果而定,一般也必不可少;功率放大单元就不用罗嗦了,是有源低音炮的核心所在了,同样,为保护低音炮安全工作并在异常时保护器材不被损坏贵重部件或将故障扩大化,保护电路一般也是必要的;电源是各个电路单元工作的动力,是基本组成部分。需要补充的是,近来一些低音炮还设计了电源自动控制功能,使低音炮在无信号时自动关闭低音炮的主电源。本文提供一种设计比较完善的超重低音前级信号处理部分电路,其中第一级为信号放大,根据需要可调整本级放大倍数,第二级为50Hz以下超重低音的提升电路,这是一般低音炮电路所没有的,第三级为频率可调低通滤波器,调整范围为80Hz-200Hz,第四级为隔离缓冲级,第五级为0-180度相位连续调整电路.这也是一般低音炮所没有的功能单元,很有特色,最后一级也属于隔离缓冲级,最后面为音量调整电位器。制作方而、其三块双运放可采用一般4558即可,供电电源为稳压电源±12-18V,由于电流很小,可由功率放大级电源经电阻降压取得,以简化设计制作难度。对此电路感兴趣者,可以根据需要予以适当的删减。至于功率放大以及保护、电源部分电路与一般功放没有什么区别,为节约篇幅略去,不过,用于低音炮工作与超低频段,就功放而言非常消耗功率,要求功率放大部分提供足够功率输出,根据音箱的效率,一般要求输出功率要大于80W,同样,电源功率储备足够也是必要的,否则,在大动态时功放输出的失真加大且输出功率受到制约,而影响低音炮的效果,至于分立元件还是用功率集成块,应该都是可以的、有一点是毫无疑问的,对于低音炮来说,变压器以及功率放大的输出功率越大越好。需要补充说明的是,音箱制作看似简单,但要做出效果、听感出色的音箱还真不是件容易的事。在业余条件下更是比较困难,如果厂家提供的单元参数比较规范且提供了参考箱体设计指南,那在业余条件下制作音箱相对容易些,低音炮更是如此。当然,这并不影响一些资深音响人士凭着一股精神,经过反复试验、调试以及惊人的听力制作出效果出众的音箱。

一款小型多媒体有源音箱制作

在以前的文章中曾经介绍过一款多媒体音箱的制作方法,不过由于该音箱采用了6.5英寸的扬声器,音箱体积对于桌面空间狭小的读者来说有点偏大。应读者的要求,在本文就介绍一款小巧玲戏的多媒体有源音箱,供爱好者参考。

扬声器选择本文介绍的扬声器均采用防磁扬声器。高音扬声器采用上海领先音响仪器公司生产的银笛牌YDQG4-12型高音扬声器,该款扬声器采用了进口丝质振膜、磁液冷却系统、全封闭防磁式磁路等一系列Hi-Fi单元采用的技术,使它比常见的低价高音单元拥有更大的功率承受能力,音质更细腻柔美。低音扬声器则采用了南京电声股份公司生产的南鲸牌4英寸喷胶纸盆防磁低音扬声器,型号为110-8SX01。各扬声器技术指标如表1所示。本音箱的高、宽、深分别为280mm×120mm×170mm(内部有效容积约3.4L)。板材为厚15mm的中密度板。左右声道音箱前面板尺寸如图1所示。由于音箱体积较小,因此各面板的交接处的连接用普通木螺钉即可胜任。倒相孔设在箱体背面上方,长度为68mm,笔者是从直径60mm的PVC工程塑料管截下68mm长的一段代用。由于倒相管在音箱背面,所以摆放时音箱后面板不要紧靠墙壁,要距墙壁等大面积反射面15cm以上。另外需要注意的是要在箱体内部高音扬声器单元后面,用吸音材料(海绵即可)做个护罩(将高音单元后部包围即可),以减少来自低音单元的声波对高音的冲击与干扰,使高音更明亮。功放电路安装在右声道音箱中,因此左右两个音箱的后面板布局有较大的差异。倒相管长度以及主音箱侧面视图如图2所示。主音箱背面视图如图3所示。两只音箱中有一只安装功放电路作为主音箱,另一只作为副音箱。由于主音箱中需要安装电源变压器,占用了一部分空间,为了保证两只音箱内部容积的一致,可以在副音箱的底部粘贴一块与电源变压器体积相近的木块作为平衡之用。箱体外侧的装饰则要根据个人喜好进行自由选择。

功放电路这款多媒体有源音箱功率较小,用输出功率20W左右的功放机推动就足够了。为了简化电路,本音箱中的功放电路采用了集成电路,具体电路如图4所示。由于普通多媒体音箱都不带耳机输出插孔,需要使用耳机时,要反复插拔声卡输出插座中的插头,带来诸多不便,对此,笔者在这款音箱中设计了一个耳机插座。当耳机没有插入插座中时,插座内部触点闭合,声卡输出的音频信号直接送到功放电路中。当插入耳机时,插座内部触点断开,切断声卡到功放的接线,声卡输出的音频信号直接送到耳机中,音箱中就没有声音输出。IC1及周围元件组成缓冲放大级,电路增益=R4/(R1+R2)=50/(10+0.1)≈5倍。为了避免在电脑关机后,在声卡停止工作时,前置放大器输入端悬空,处于高阻抗输入状态,将感应到的50Hz交流电信号送到后级电路放大,从而在扬声器中出现较强的噪声,特设置了22kΩ电阻R25、R26,这样不但可以将输入阻抗限制在22kΩ,避免前置电路工作在高阻抗状态,还可以对50Hz感应信号进行有效的抑制,提高整机信噪比。功率放大集成电路采用了NS公司生产的双声道20W高保真功率放大器LM1876。LM1876采用15脚TO-220封装,具有静噪、待机模式功能,其主要电气参数如表2所示.LM1876的负载范围很宽,在4~30Ω的范围内均能稳定地工作,其输出功率与负载的对应关系如图5所示。LM1876的供电电压范围为±10~±25V,当供电电压降低时,影响的只是输出功率的大小,而对其他指标影响不大,供电电压与输出功率的对应关系如图6所示。LM1876的6、11脚为左/右声道静噪控制端,当这几脚接高电平(高于1.6V)时,LM1876内部电路执行静音操作,切断输出端的音频信号(如图7所示)。因此可以在这些引脚中与正电压之间接一个RC延时网络,使其在开机瞬间为高电平,输出电路无音频信号输出,延时一段时间后,再正常输出,以达到避免开机瞬间输出端电位失谐对扬声器的冲击。在图4中,晶体管VT1、R24、C16、R20、C15即为开机延时网络,调整它们的取值范围,可以改变延时时间的长短,从而获得满意的开机延时时间。图4电路中的R11、R16一方面为后级功放电路输入端电阻,决定功放电路的输入阻抗,如R11、R16为22kΩ的电阻,输入阻抗就为22kΩ。另一方面是给集成块内第一级差分放大电路提供一个偏置电流,使其正常工作。需要注意的是R11、R16的取值不可过高,否则会使输出端的中点电位偏高;但也不可过低,否则输入阻抗太低,增大前级电路的功耗,使电路输出增益下降。它们的取值范围应在15~51kΩ之间。R12和R14组成一个分压器,与集成块、脚相连,构成负反馈网络。本电路的放大倍数也由它们决定,放大倍数=(R12+R14)÷R14=(15K+1.2k)÷1.2k=13.5。因此,只要改变R12、R14的阻值,就可以调整电路的放大倍数,但要注意的是放大倍数应在10倍以上,否则LM1876工作会不稳定。R15与C7构成扬声器补偿网络(或者称为茹贝尔网络),可吸收扬声器的反电动势,防止电路振荡。C8和C9为电源旁路电容(ByPass旁路电容),起到降低电源高频内阻的作用,防止电路高频自激,使LM1876工作更稳定。图4电路中电阻均选用1/4W五色环金属膜电阻,电容除了C15、C16外,其余电容均为WIMA金属化聚丙烯电容。而NE5532则选用美国大S公司的产品(飞利浦公司的产品亦可,单价在10元左右,市面上许多2-3元的不推荐使用)。音量电位器则选用了平价质优的ALPS产品,如果嫌音量调节麻烦,也可以将音量电位器省略,将其用两个20kΩ的电阻串连后代换(LM1876的8脚与13脚分别接在两个电阻的中点)。这样一来,音箱的音量调节就可以通过Wndows操作系统中的“音量控制”来进行调节(双击或者单击显示器右下角的小喇叭图标即可进行调整)。电源变压器采用输出电压为16.5V×2的黑白电视机电源变压器,电源电路如图8所示。

分频器电路图9是该音箱分频器电路图,分频点选在3kHz。由于扬声器是一个感性负载,当通过信号频率不同时,其阻抗变化很大,故在分频器中加入了由R1、C3、R2、C6组成的阻抗校正网络,使分频器的负载阻抗近似为恒定值。分频器所用元器件的参数如表3所示。由于功放块LM1876在工作时会有很多热量产生,故需要为其加装散热器。笔者将报废的CPU散热片用电钻打两个小孔后作为功放电路的散热片。装配时,在主音箱的背板上用手锯开一个跟散热器面积相仿的矩形孔,将散热器内壁朝内插人此孔,并用密封胶封死,然后用螺栓将LM1876固定到散热器上即可(电路板要与散热器绝缘)。变压器安装在主音箱(以右声道为例)底部,功放电路安装在音箱内合适的地方即可。主音箱内部填充的吸音棉不能与功放电路中的散热器接触。

音箱通用原理

1、引言目前音箱是按其构造分类的,例如闭箱、倒相箱、空纸盆箱(无源辐射箱)、迷宫箱、二级倒相箱、前号筒箱、后号筒箱、箱式低音炮、管式低音炮、加载式、传输线式、管道式等等约有10余种形式,而每一种音箱都不得有各自的原理解释,绝大多数解释的不完全不全面。人们知道,设置音箱的目的有两个,一是因为频率在1~200Hz以下的低音无方向性,振膜前后方的声波呈反相状态,会引起低音声短路,致使低频声压大跌,因此需用音箱隔离前后声波;二是单个扬声器的频响范围有限,为拓宽频响,需用2只以上扬声器分别工作在不同的频段,以达到对高低音向两端延伸的要求。防止声短路问题,但背辐射声波的能量没有利用起来。为改善这一弱点,人们又发明了10余种形式的音箱,在防止低音声短路的前提下,充分利用背辐射声波的能量,提高电声轮换效率,拓宽低频响应。这10余种音箱都有各自的工作原理解释,有些解释较清楚,有些解释较笼统,甚至还有一些片面的误解。这种设计制作各种音箱带来了难度,为此,笔者提出一种全新的通用的音箱原理——消音与半消音原理。在充分理解的基础上,就能举一反三,设计制作好任意结构的音箱。

2、音箱的分类传统的分类是按箱体的结构分类,而根据消音与半消音原理分类,是按背辐射声波的处理方式分类,这就将所有的动圈式扬声器归纳为一个共同的原理——消音与半消音原理。并分为两大类箱形,即消音箱和半消音箱。2.1消音式音箱消音式音箱就是对箱内声波作消音处理,闭箱就是典型的消音箱,此外,大障板箱、背开口箱、对称驱动箱、前号筒箱等均为消音式音箱。通过消音二字,对其工作原理就能大体略知,消音的好坏,直接关系到放音质量的好坏。这里可把背辐射声波分为两个频段,分别对待。一段是低音扬声器装箱后听谐振频段,另一段是低音单元除去谐振频段后的全部频段即非谐振频段。对谐振频段来说,未加入吸声材料时,声波能量被吸收的较少,能量被转移消化的较少,因此谐振能量较大,低音单元在谐振频率处的谐振未受到太多的抑制,振幅依然很大,造成很强的自感电势,自感电势与信号电势共同参与电声双向反应(笔者在另一文章提出了电声双向反应论),对谐振频率处的声波造成最大的波形失真,这是危害之一。危害之二是当电信号停止时,惯性导致大振幅具有较强的余振,造成声波拖尾变长,使低频变得拖泥带水,产生隆隆声。这个隆隆声就是余振拖尾造成的,是电信号中没有的新声波。危害之三是强烈的振幅产生较高的声压,该声波失真又大,又会使频响曲线的低端凸起,破坏了声压的平衡。对音箱来说,减少这3点危害的有效方法就是增加吸声材料。但吸声材料的加入量并非越多越好,过多的吸声材料,虽然减少了前两个危害,但又造成低音力度不足。这就需要折衷处理,如何掌握吸声材料的加入量,以什么为标准呢?应以反映谐振峰阻尼特性的Q值为标准,将音箱Q值调整在0.6~0.7之间为好。当Q值<0.6较多时,阻尼过量,低频清晰无隆隆声。如果Q值>0.7较多时,阻尼不足,低频声压虽上升,但是瞬态特性变差,低频伴有隆隆声,声波不清晰。影响音箱Q值的因素有两点,一是单元装箱前的Q值,由扬声器厂家设计确定,用户一般只能挑选不能调整。二是箱内吸声材料的品种和数量可选。这两个因素是互相影响的,一个方面的不足,可用另一个方面给予补偿。但这种补偿是有限度的,例如一个自身阻尼不足的低音单元,品质因数Q值过大时,是无法通过增加吸声材料来使其工作在最佳状态的,只能使其转好一点而已。扬声器的谐振频率装箱后会向上漂移,漂移量的大小,受箱容积和吸声材料的影响。箱容积越大,吸声材料越多,向上漂移量越小,反之相反。所以消音箱谐振峰的频率,由单元、箱容积及吸声材料共同决定。单元谐振频率低,箱容积大,吸声材料多,谐振频率就低。值得注意的是单元的谐振频率,这是起主导作用的。如果单元谐振频率偏高,就不能指望通过加大消音箱容积来延伸低频响应,因为单靠增大消音箱容积只能获得减少向上的漂移量,并不能使音箱的谐振越过扬声器自身谐振点向下延伸(半消音可以)。一对音箱的低频表现,应该是频率低、声压足、无隆隆声。而频率和声压两者很难同时照顾到最佳值,只能折衷考虑。追求低频的最佳方案是,单元口径大(口径略小但线性冲程长),谐振点低,适当的大容积,适量的吸声材料。低频响应的下限值,主要由单元谐振点所决定。任意一只低音单元,可以配用不同容积的箱体,箱容积偏大时,谐振峰向高峰漂移小,频响箱容积偏小,谐振峰向上漂移大,频宽变小,能量较为集中,使低端声压有所上升,箱容积小到一定程度时,会在低频段的频响曲线上出现一个上凸区。人们希望在保持声压频响曲线尽量平坦的前提下尽量拓宽低频下限。

对谐振峰以上频段的背辐射声波,即非谐振频段声波,则要做最大程度的消音处理,消音越彻底,背辐射声波对振动体的调制干扰越小,声染色就越小,下面声波就越清晰。为了使消音更彻底,增加吸声材料的数量是必要的,但不是唯一的,消音需注意以下几点。

(1)品种的选择不同材料具有不同的吸声材料,同一种材料在不同的频率下吸声系数也不同,吸声系数大的作为首选。应该选择谐振频段吸声系数小、其它频段吸声系数大的。这样可在保证最佳Q值的同时,尽可能地加入更多的吸声材料,对背辐射有害声波给予更多的吸收,减少有害声波的影响,提高正面声波的清晰度。(2)吸声材料的放置方式这个问题容易被除数大家忽视,例如有的品牌音箱将吸声材料扎成一个小布袋,随意丢在箱内,还有不少文章推荐在中间。笔者认为,放在中间有两种状况,一是填满空腔,二是不填满,同为中间效果不同。将吸声材料分散布满各个反射面是最佳方案,好处有两条:一是分散布置可降低厚度,使低频吸收系数降低的幅度大于中频吸收系数降低的幅度,在保证相同Q值的前提下,可放入更多的吸声材料,进一步加大中频波的吸收,从而获得更清晰的下面声波;二是分散放置时,反射到箱内各处的声波都能得到有效吸收。如果将吸声材料做布袋状,随意置于箱内,就会有部分声波被箱壁反射回到振膜(除非吸声布袋充满箱内空间,但这种机会不多),使干扰变大。(3)音箱结构设计传统观念比较重视箱板厚度和正面两侧棱角及减少驻波的内尺寸,但忽略了一个非常重要的问题,那就是要将减少背辐射反射回到振膜为首要目标.笔者见过发烧友将面板做到一寸厚,箱体厚实牢固,但声染色依然存在。采用特厚的面板,表面看是好事,其实搞不好会弄巧成拙,音染更大了。原因在于扬声器的背辐射声波刚出窗口就撞上厚厚的面板孔边,近距离的大量反射波重返振膜势必造成更大的音染。对现有过厚的面板,低音单元的面板开孔要由90°垂直边改造为45°左右斜边,减少空气振动阻力。只要充分理解了消音式音箱的含义,再融入传统的设计公式或计算机辅助设计,不难制作出满意的消音式音箱。2.2半消音箱消音式音箱具有设计调试简单的特点,音质也很好,但背辐射声波未能利用起来,低频失真较大,且低频下潜不深。而随后发展起来的半消音式音箱,对这两条缺陷有所改进,既能减少低频失真又能拓宽低频响应,但调试复杂一些,如果没有对音箱原理的深刻认识,没有简单的仪器帮助,很难将低频和中频及中高频部分做好,尤其是中频和中高频。倒相式、两级倒相式、空纸盆式、迷宫式、带通式(低音炮)、管道式、后号筒式、1/4波长加载式、传输线式、科尔顿式等等,均为半消音式音箱。它们都有一个共同特点,那就是充分利用背辐射声波在谐振频段的能量。通过箱腔空气谐振与扬声器谐振的互相耦合,最大限度地将扬声器谐振能量较变为箱腔谐振能量,再通过开口或空纸盆将谐振能量辐射出去,从而提高低频声压并拓宽了低频响应。由于扬声器谐振能量通过谐振波这根本看不见的空气弹簧从开口大量辐射出去,加大了振膜的负载,有效抑制了振膜在谐振频段的大幅振动,从而减少了扬声器感应电势的产生,使失真显著减少,并能大幅提高低音扬声器的功率承受额。半消音式音箱的种类虽然很多,结构各不相同,但其工作原理大同小异,例如两级倒相式,就是在倒相式基础上,又增加了一个谐振腔,两个箱腔谐振与扬声器谐振互相耦合,使谐振频率处的交流阻抗曲线形成3个小峰,3个阻抗峰比2个阻抗峰更优一筹,能使谐振输出声波频带进一步展宽,拓展了低频。调试良好的箱腔谐振,使振膜在此频段的辐射阻抗大为提高,负荷的大幅提高使振幅更小,自感电势更低,失真因此更小,振动冲程的压缩使其具有更大的功率承受额,比单级谐振(倒相)箱性能更佳,只是调试更加复杂罢了。空纸盆箱与倒相箱原理完全一样,只是调试方法不同罢了。带通式低音炮有两种结构,一种是闭箱加倒相箱的合成,另一种是两个倒相箱的合成,工作原理一样,都是利用2个谐振峰工作在不同的频段,一高一低,高端一般设计在120Hz~180Hz,低端一般设计在20~60Hz,2峰又叠加后从而输出一个频率为带通状的声波。这两种箱型原理一样,但效率不一样,双倒相合成的效率略高一些。还可以将一个倒相箱和一个两级倒相箱组合成3腔式低音炮,让扬声器阻抗峰呈3峰的小群峰状,进一步拓宽输出频响,使输出的频段更宽更平坦,并得到更高的功率承受额,更高的电声转换效率,更低的失真,更低的低频。管式低音炮和箱式低音炮尽管造型不一,实际工作原理是相同的,但两者效率略有差异,管式效率更高些。不同的管径也略有差异,圆管内截面与振膜振动面积接近时效率最高,相差越大效率越低。倒相管的尺寸也关系到效率高低,大而长的比小而短的效率更高些。科尔顿式是闭箱加带通箱的合成,而迷宫式、管道式、后号筒式、1/4波长加载式、传输线式,尽管形状不一,名称不一,内涵却是一致的,具有与倒相箱相同的工作原理。都是利用箱腔谐振与扬声器谐振的互相耦合,将扬声器谐振能量耦合到箱腔谐振,再通过开口辐射出去,同时降低了扬声器在谐振频段的振幅,减少了感应电势,从而改善了失真,并提高了功率承受额。半消音式音箱的背辐射声波,同消音式一样,也是分为两个频段,即有用的谐振频段和有害的非谐振频段。相同的是,对有害声波要尽一切手段,最大限度地做消音处理,减少有害声波对内对外的干扰,从而提高下面声波的清晰度。不同的是对谐振频段的处理,消音式只是作简单的部分消音,让反映谐振峰阻尼特性的Q值保持在中等程度。半消音式除对谐振给予部分消音,让Q值保持在中等程度外,同时还对谐振波作最大限度的利用,达到拓宽低频响应,减少失真,提高功率承受额的目的。3、总结综上所述,消音式与半消音式,都遵循一个共同的原理,即消音与半消音原理,对谐振频段作有限消音,对非谐振频段全消音处理。遵循这个原理,就能做好任意结构的音箱。低音炮没有非谐振频段信号输入,故不存在消音和自身的声压平衡问题,因此也不存在半消音问题,所以低音炮不需加入任何吸声材料,只要将阻抗峰调整到等高状即可。放音时的声压平衡由音量控制。

献花(0)
+1
(本文系白松幽幽首藏)