基本公式:
Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'
1. 矩阵Y对标量x求导:
相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了
Y = [y(ij)] --> dY/dx = [dy(ji)/dx]
2. 标量y对列向量X求导:
注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量
y = f(x1,x2,..,xn) --> dy/dX =
(Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'
3. 行向量Y'对列向量X求导:
注意1×M向量对N×1向量求导后是N×M矩阵。
将Y的每一列对X求偏导,将各列构成一个矩阵。
重要结论:
dX'/dX = I
d(AX)'/dX = A'
4. 列向量Y对行向量X’求导:
转化为行向量Y’对列向量X的导数,然后转置。
注意M×1向量对1×N向量求导结果为M×N矩阵。
dY/dX' = (dY'/dX)'
5. 向量积对列向量X求导运算法则:
注意与标量求导有点不同。
d(UV')/dX = (dU/dX)V' + U(dV'/dX)
d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'
重要结论:
d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A
d(AX)/dX' = (d(X'A')/dX)' = (A')' = A
d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X
6. 矩阵Y对列向量X求导:
将Y对X的每一个分量求偏导,构成一个超向量。
注意该向量的每一个元素都是一个矩阵。
7. 矩阵积对列向量求导法则:
d(uV)/dX = (du/dX)V + u(dV/dX)
d(UV)/dX = (dU/dX)V + U(dV/dX)
重要结论:
d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A
8. 标量y对矩阵X的导数:
类似标量y对列向量X的导数,
把y对每个X的元素求偏导,不用转置。
dy/dX = [ Dy/Dx(ij) ]
重要结论:
y = U'XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV'
y = U'X'XU 则 dy/dX = 2XUU'
y = (XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' -
2VU' + 0 = 2(XU-V)U'
9. 矩阵Y对矩阵X的导数:
将Y的每个元素对X求导,然后排在一起形成超级矩阵。
10.乘积的导数
d(f*g)/dx=(df'/dx)g+(dg/dx)f'
结论
d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x
(注意:''是表示两次转置)
比较详细点的如下:
![[转载]矩阵求导公式【转】 [转载]矩阵求导公式【转】](http://image106.360doc.com/DownloadImg/2017/05/1920/99602623_1)
![[转载]矩阵求导公式【转】 [转载]矩阵求导公式【转】](http://image106.360doc.com/DownloadImg/2017/05/1920/99602623_2)
![[转载]矩阵求导公式【转】 [转载]矩阵求导公式【转】](http://image106.360doc.com/DownloadImg/2017/05/1920/99602623_3)
![[转载]矩阵求导公式【转】 [转载]矩阵求导公式【转】](http://image106.360doc.com/DownloadImg/2017/05/1920/99602623_4)
![[转载]矩阵求导公式【转】 [转载]矩阵求导公式【转】](http://image106.360doc.com/DownloadImg/2017/05/1920/99602623_5)
http://lzh21cen.blog.163.com/blog/static/145880136201051113615571/
http://hi.baidu.com/wangwen926/blog/item/eb189bf6b0fb702b720eec94.html
其他参考:
Contents
- Notation
- Derivatives of Linear Products
- Derivatives of Quadratic Products
Notation
-
d/dx (y) is
a vector whose (i) element
is dy(i)/dx
- d/dx (y) is a vector
whose (i) element
is dy/dx(i)
-
d/dx (yT)
is a matrix
whose (i,j) element
is dy(j)/dx(i)
- d/dx (Y) is a matrix
whose (i,j) element
is dy(i,j)/dx
- d/dX (y) is a matrix
whose (i,j) element
is dy/dx(i,j)
Note that the Hermitian transpose is not used because complex
conjugates are not analytic.
In the expressions below matrices and
vectors A, B, C do
not depend on X.
Derivatives of Linear Products
-
d/dx (AYB) =A * d/dx (Y)
* B
-
-
d/dx (xTA) =A
-
-
d/dx (xT) =I
-
d/dx (xTa) =
d/dx (aTx)
= a
-
d/dX (aTXb)
= abT
-
-
d/dX (aTXa)
= d/dX (aTXTa)
= aaT
-
d/dX (aTXTb)
= baT
-
d/dx (YZ) =Y * d/dx (Z)
+ d/dx (Y) *
Z
Derivatives of Quadratic Products
-
d/dx (Ax+b)TC(Dx+e)
= ATC(Dx+e) + DTCT(Ax+b)
-
-
d/dx (xTCx)
= (C+CT)x
-
- [C:
symmetric]: d/dx (xTCx)
= 2Cx
-
d/dx (xTx)
= 2x
-
d/dx (Ax+b)T (Dx+e)
= AT (Dx+e) + DT (Ax+b)
-
-
d/dx (Ax+b)T (Ax+b)
= 2AT (Ax+b)
- [C:
symmetric]: d/dx (Ax+b)TC(Ax+b)
= 2ATC(Ax+b)
-
d/dX (aTXTXb)
= X(abT +
baT)
-
-
d/dX (aTXTCXb)
= CTXabT +
CXbaT
-
-
d/dX (aTXTCXa)
= (C +
CT)XaaT
- [C:Symmetric] d/dX (aTXTCXa)
= 2CXaaT
-
d/dX ((Xa+b)TC(Xa+b))
=
(C+CT)(Xa+b)aT
Derivatives of Cubic Products
-
d/dx (xTAxxT)
=
(A+AT)xxT+xTAxI
Derivatives of Inverses
- d/dx (Y-1)
= -Y-1d/dx (Y)Y-1
Derivative of Trace
Note: matrix dimensions must result in
an n*n argument for
tr().
- d/dX (tr(X))
= I
-
d/dX (tr(Xk))
=k(Xk-1)T
-
d/dX (tr(AXk))
= SUMr=0:k-1(XrAXk-r-1)T
-
d/dX (tr(AX-1B))
= -(X-1BAX-1)T
-
d/dX (tr(AX-1))
=d/dX (tr(X-1A))
= -X-TATX-T
-
d/dX (tr(ATXBT))
= d/dX (tr(BXTA))
= AB
-
d/dX (tr(XAT))
= d/dX (tr(ATX))
=d/dX (tr(XTA))
= d/dX (tr(AXT)) =
A
-
d/dX (tr(AXBXT))
= ATXBT + AXB
-
d/dX (tr(XAXT))
= X(A+AT)
-
d/dX (tr(XTAX))
= XT(A+AT)
-
d/dX (tr(AXTX))
= (A+AT)X
- d/dX (tr(AXBX))
= ATXTBT + BTXTAT
- [C:symmetric] d/dX (tr((XTCX)-1A)
= d/dX (tr(A
(XTCX)-1)
= -(CX(XTCX)-1)(A+AT)(XTCX)-1
- [B,C:symmetric] d/dX (tr((XTCX)-1(XTBX))
= d/dX (tr(
(XTBX)(XTCX)-1)
= -2(CX(XTCX)-1)XTBX(XTCX)-1 +
2BX(XTCX)-1
Derivative of Determinant
Note: matrix dimensions must result in
an n*n argument for
det().
- d/dX (det(X))
= d/dX (det(XT))
= det(X)*X-T
-
- d/dX (det(AXB)) =
det(AXB)*X-T
-
d/dX (ln(det(AXB)))
= X-T
-
d/dX (det(Xk))
= k*det(Xk)*X-T
-
d/dX (ln(det(Xk)))
= kX-T
- [Real] d/dX (det(XTCX))
=
det(XTCX)*(C+CT)X(XTCX)-1
-
- [C: Real,Symmetric] d/dX (det(XTCX))
= 2det(XTCX)*
CX(XTCX)-1
- [C: Real,Symmetricc] d/dX (ln(det(XTCX)))
= 2CX(XTCX)-1
If y is a function
of x,
then dyT/dx is
the Jacobian matrix
of y with respect
to x.
Its determinant,
|dyT/dx|, is
the Jacobian of y with
respect to x and
represents the ratio of the
hyper-volumes dy and dx.
The Jacobian occurs when changing variables in an integration:
Integral(f(y)dy)=Integral(f(y(x))
|dyT/dx|
dx).
Hessian matrix
If f is a function
of x then the symmetric
matrix
d2f/dx2 = d/dxT(df/dx)
is the Hessian matrix of
f(x). A value
of x for which
df/dx = 0 corresponds
to a minimum, maximum or saddle point according to whether the
Hessian is positive definite, negative definite or indefinite.
-
d2/dx2 (aTx)
= 0
-
d2/dx2 (Ax+b)TC(Dx+e)
= ATCD + DTCTA
-
-
d2/dx2 (xTCx)
= C+CT
-
-
d2/dx2 (Ax+b)T (Dx+e)
= ATD + DTA
-
-
d2/dx2 (Ax+b)T (Ax+b)
= 2ATA
- [C:
symmetric]: d2/dx2 (Ax+b)TC(Ax+b)
= 2ATCA
http://www.psi./matrix/calculus.html
|