分享

费米子

 温馨的淑女 2017-06-21

费米子是自旋为半整数(1/2,3/2…)的粒子的统称,服从费米-狄拉克统计。费米子满足泡利不相容原理,即不能两个以上的费米子出现在相同的量子态中。轻子,核子和超子的自旋都是1/2,因而都是费米子。自旋为3/2,5/2,7/2等的共振粒子也是费米子。根据标准理论,其他有质量的非基本粒子,都由费米子组成,例如中子、质子都是由三种夸克组成,自旋为1/2。奇数个核子组成的原子核。因为中子、质子都是费米子,故奇数个核子组成的原子核自旋是半整数。[1]

快速导航

中文名 费米子
特 点 遵守泡利不相容原理
例 子 中子,质子,电子等
外文名 fermion
属 性 质量、能量、磁矩和自旋
 
 

费米子:夸克和轻子-内部结构模型图费米子就是有奇数半整数自旋的粒子(像1/2,3/2,依此类推)夸克、轻子、大部分混合粒子(像质子和中子)都是费米子。

由于我们并不十分地了解,奇数半整数自旋就是费米子遵守泡利不相容原理的结果,而因此不能在同时同状态同位置共存。[2]

费米子(fermion):费米子是依随费米-狄拉克统计角动量自旋量子数为半奇数整数倍的粒子。费米子遵从泡利不相容原理[3]。得名于意大利物理学家费米。根据标准理论,费米子均是由一批基本费米子,而基本费米子则不可能分解为更细小的粒子。基本费米子分为2类:夸克和轻子。而这2类基本费米子,又分为合共24种味道(flavour):12种夸克:包括上夸克(u)、下夸克(d)、奇夸克(s)、魅夸克(c)、底夸克(b)、顶夸克(t),及它们对应的6种反粒子。12种轻子:包括电子(e)、渺子(μ)、陶子(τ)、、中微子νe、中微子νμ、中微子ντ,及对应的6种反粒子,包括3种反中微子。中子、质子:都是由三种夸克组成,自旋为1/2。

费米子(质子,中子,电子)-内部结构模型费米子(fermion):自旋为半整数的粒子。比如电子、质子、中子等以及其反粒子。它们符合泡利不相容原理,以及费米-狄拉克统计。波色子和费米子是物质世界的两种存在,波色子和费米子正好和中国古代的阴阳太极思想一致,即阴物质是波色子,是物质存在的基础,阳物质是费米子,是物质存在的形式,我们现实世界存在就是以阴物质存在的基础而表现出阳物质形式。

费米子,得名于意大利物理学家费米.

玻色子:.胶子-内部结构模型图玻色子:光子-内部结构模型图玻色子是依随玻色-爱因斯坦统计,自旋为整数的粒子。玻色子不遵守泡利不相容原理,在低温时可以发生玻色-爱因斯坦凝聚。玻色子包括:.胶子-强相互作用的媒介粒子,自旋为1,有8种;光子-电磁相互作用的媒介粒子,自旋为1,只有1种这些基本粒子在宇宙中的“用途”可以这样表述:构成实物的粒子(轻子和重子)和传递作用力的粒子(光子、介子、胶子、w和z玻色子)。在这样的一个量子世界里,所有的成员都有标定各自基本特性的四种量子属性:质量、能量、磁矩和自旋。

这四种属性当中,自旋的属性是最重要的,它把不同将粒子王国分成截然不同的两类,就好像这个世界上因为性别将人类分成了男人和女人一样意义重大。粒子的自旋不像地球自转那样是连续的,而是是一跳一跳地旋转着的。传递作用力的粒子(光子、介子、胶子、w和z玻色子)都是玻色子。

在一组由全同粒子组成的体系中,如果在体系的一个量子态(即由一套量子数所确定的微观状态)上只容许容纳一个粒子,这种粒子称为费米子。费米子所遵循的统计法称为费米统计法。费米统计法的分布函数为式中n(ε)为体系在温度T达热平衡时处于能态ε的粒子数;α为温度和粒子总数的函数。

第六种物质形态诞生

人类生存的世界,是一个物质的世界。过去,人们只知道物质有三态,即气态、液态和固态。20世纪中期,科学家确认物质有第四态,即等离子体态(plasma)。1995年,美国标准技术研究院和美国科罗拉多大学的科学家组成的联合研究小组,首次创造出物质的第五态,即“玻色—爱因斯坦凝聚态”。为此,2001年度诺贝尔物理学奖授予了负责这项研究的三位科学家。

2004年1月29日,又是这个联合研究小组宣布,他们创造出物质的第六种形态———费米子凝聚态(fermioniccondensate)。消息传出,国际物理学界为之振奋。专家们认为,这一成果为人类认识物质世界打开了又一扇大门,具有重大的理论和实践意义,将成为年度重大科技成果之一。

研究小组负责人德博拉·金30岁,2003年获得美国麦克阿瑟基金会颁发的“大天才”奖。她表示,这项成果有助于下一代超导体的诞生。而下一代超导体技术可在电能输送、超导磁悬浮列车、超导计算机地球物理勘探生物磁学高能物理研究等众多领域和学科中大显身手。

形态的区别

通常所见的物质是由分子、原子构成的。处于气态的物质,其分子与分子之间距离很远。而构成液态物质的分子彼此靠得很近,其密度要比气态的大得多。固态物质的构成元素是以原子状态存在的,原子一个挨着一个,相互牵拉,这就是固体比液体硬的原因。

被激发的电离气体达到一定的电离度之后便处于导电状态。电离气体中每一带电粒子的运动都会影响到其周围带电粒子,同时也受到其他带电粒子的约束。由于电离气体内正负电荷数相等,这种气体状态被称为等离子体态。

所谓玻色—爱因斯坦凝聚,是科学巨匠爱因斯坦在70年前预言的一种新物态。这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态。玻色—爱因斯坦凝聚态物质由成千上万个具有单一量子态的超冷粒子的集合,其行为像一个超级大原子,由玻色子构成。这一物质形态具有的奇特性质,在芯片技术精密测量纳米技术等领域都有美好的应用前景。

创造

由于没有任何两个费米子能拥有相同的量子态,费米子的凝聚一直被认为不可能实现。物理学家找到了一个克服以上障碍的方法,他们将费米子成对转变成玻色子。费米子对起到了玻色子的作用,所以可让气体突然冷凝至玻色—爱因斯坦凝聚态。这一研究为创造费米子凝聚态铺平了道路。

从事费米子凝聚态研究的科学家们秉承着“大胆假设、小心求证”的科学精神,慎重地向这块未知的科学领域推进。

1937年,随着量子力学的兴起,意大利理论物理学家EttoreMajorana提出可能存在一种新型的奇特粒子,即名为Majorana费米子的粒子。经过75年的追寻,研究人员终于发现了Majorana费米子存在的一个可靠证据。而这一发现就如同找到了一把通往拓扑量子计算时代的“钥匙”。

早在Majorana之前,奥地利物理学家Schrodinger就提出了描写量子行动和互动的方程式。英国物理学家PaulDirac点缀了该方程式,使其能够适用于费米子,并且将量子力学和爱因斯坦的相对论结合在了一起。同时Dirac的研究还指出了反物质的存在,并暗示某些粒子可以作为其本身的反粒子,如光子,但费米子却被认为并非此类粒子。后来,Majorana延伸了Dirac方程式,认为可能存在一种新的费米子能够作为其本身的反粒子,这种粒子就是Majorana费米子。

然而,Majorana费米子始终披着神秘面纱,从20世纪到21世纪,全世界物理学家一直在努力寻找它。Majorana也曾提出,一种中微子——电中性粒子的些微聚集,可能刚好符合他提出的这种假设粒子的要求。

几十年过去了,理论物理学家发现调整大量电子的移动也许能够模仿Majorana费米子,而且,被称为“准粒子”的这些集体运动的表现与同类型的基本粒子非常像。日前,荷兰代尔夫特理工大学物理学家LeoKouwenhoven和同事发现了这些准粒子的迹象,并将研究报告在线发表在《科学》上。

Kouwenhoven研究小组专门设计制造了实验使用的晶体管。早前的理论假设就提到,如果其中一个电极是超导体,并且电流在磁场中流过一个特殊的半导体纳米线,就可能促使电子在纳米线的另一端表现得像Majorana费米子一般。理论还进一步指出,如果研究者试图在磁场外从标准电极中输送电流到超导电极,电子可能在超导体中反弹,因此超导电极中检测不到电流。但是,如果磁场开启,将能触发Majorana费米子的存在,这样电子将会进入超导体,并在电流中出现跳跃。

Kouwenhoven研究小组则发现了这一电流尖峰。而且,当研究人员改变诱发Majorana费米子的任何一个条件时,例如关闭磁场,用金属电极更换超导电极,第二个电极中的电流尖峰就会消失不见。

然而,这一结果并不能直接证实Majorana费米子的发现。美国加利福尼亚大学理论物理学家JasonAlicea认为,这个荷兰研究小组为消除其他可能的解释做出了非常引人瞩目的工作。但是,他也指出,该研究并不能完全证实Majorana费米子的存在。

如果找到了这种“神奇粒子”,将使在固体中实现拓扑量子计算成为可能,人类也将进入拓扑量子计算时代。因为当相互移动两个Majorana费米子时,它们能够“记得”自己以前的位置,这一性质可以用来编码量子级别数据。[4]

夸克:上夸克(u)、下夸克(d)、奇夸克(s)、粲(cān)夸克(c)、底夸克(b)、顶夸克(t),及它们对应的6种反粒子。

轻子:包括电子、渺子陶子及对应的反粒子、三种中微子及对应的三种反中微子。

中子、质子:都是由三种夸克组成,自旋为1/2。

奇数个核子组成的原子核。(因为中子、质子都是费米子,故奇数个核子组成的原子核自旋是半整数。)

由全同费米子组成的孤立系统,处于热平衡时,分布在能级εi的粒子数为,Ni=gi/(e^(α+βεi)+1)。α为拉格朗日乘子、β=1/(kT),有体系温度,粒子密度和粒子质量决定。εi为能级i的能量,gi为能级的简并度

根据自旋倍数的不同,科学家把基本粒子分为玻色子和费米子两大类。费米子是像电子一样的粒子,有半整数自旋(如1/2,3/2,5/2等);而玻色子是像光子一样的粒子,有整数自旋(如0,1,2等)。

这种自旋差异使费米子和玻色子有完全不同的特性。没有任何两个费米子能有同样的量子态:它们没有相同的特性,也不能在同一时间处于同一地点;而玻色子却能够具有相同的特性。

基本粒子中所有的物质粒子都是费米子,是构成物质的原材料(如轻子中的电子、组成质子和中子的夸克、中微子);而传递作用力的粒子(光子、介子、胶子、W和Z玻色子)都是玻色子。

四费米子作用

四费米子作用理论认为,弱相互作用是弱流与弱流的相互作用。每一个弱流由正反两个费米子构成,因此是四个费米子的相互作用。

1、将不同粒子参与的弱相互作用统一为普适的相互作用。理论只需要一个普适的相互作用常数。

2、弱流是带有手征的而不是手征变换不变的,解释了弱相互作用对空间反演对称性的破坏。

四费米子相互作用后来被弱相互作用的规范理论取代。

重费米子体系

重费米子体系主要包括一些含有稀土金属如铈、镱,锕族金属元素如铀的金属化合物。这类化合物在低温下表现为超导,反铁磁或铁磁,或者费米液体的行为,但是有很高的比热,通常认为准粒子有很高的质量,因此叫做重费米子材料。

费米气体模型

费米气体模型用来描述由大量费米子组成的系统。

系统中的粒子认为全同且不可分辨。费米子的角动量自旋量子数为半奇数整数倍,其本征波函数反对称。导致在费米子的某一个量子态上,最多只能容纳一个粒子(假设可以容纳多个的话的话,因为粒子的不可分辨性,调换任意两个粒子的位置,波函数应该不变,即Ψ=-Ψ,得Ψ=0,显然矛盾了)。这就是费米子所遵守的泡利不相容原理

不相容原理的基础上,可进一步按热力学定律得出费米的分布规律:费米-狄拉克分布。(公式比较复杂,我就不打了)费米气体中的所有粒子服从该分布。金属自由电子气就是典型的费米气体。

费米子气体模型和理想气体模型也有一定联系,费米气遵守费米-狄拉克统计,而理想气体模型中的粒子遵守麦克斯韦-波尔兹曼统计,在高温和低密度条件下,能级数远多于粒子数,费米-狄拉克分布过渡到经典的麦克斯韦-玻耳兹曼分布

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多