分享

射频( RF)采样系列文章精选,不要错过!

 汉无为 2017-07-17

下面为RF采样博客系列文章精选,让你对RF采样有进一步认识和理解。

第一篇 射频( RF)采样:热销中的全新架构

人类对带宽的需求是永无止境的。我们希望自己的智能手机可提供更多的游戏、更多的视频流和更多的社交媒体互动。此外,访问网络的人也比以往任何时候都多。所有这一切都使网络必须用更多的带宽来支持我们要求的数据和容量规定。

图1展示了一种用于支持高带宽信号的传统接收器架构。混频器级可将射频(RF)频谱信号转换成固定的中频(IF)信号。正交解调器再将中频信号向下转换成复基带(BB)信号,在复基带处,信号被双通道模数转换器(ADC)采样并传递到数字处理器。

奈奎斯特采样定理规定,采样频率必须至少是信号带宽的两倍;但在实践中,采样频率甚至需要更高。

当数据转换器采样速率是限制因素时,运用所有可获得的技巧来减少那种带宽势在必行。解调器可将信号分成两条正交路径,每条路径的带宽是原始信号带宽的一半。即使采用该技巧,迄今为止也很难找到一种具有足够采样速率能力和动态范围来捕获高端通信设备所需宽带信号的数据转换器......

图1:适用于宽带信号的传统超外差接收器架构

全新的更高采样速率数据转换器(采样速率高达4GSPS甚至超过4GSPS)可直接对大信号带宽进行采样。此外,该器件还能直接在RF频带内运行。这就提供了一个全新的架构选项,如图2所示。该RF采样接收器架构不仅去除了RF混频器级与其相关的本地振荡器(LO)合成器,而且去除了正交解调器及相关的BB电路与LO合成器,并用单个RF采样ADC取代了双通道ADC。通过采用RF采样ADC,信号路径已被大大简化。


图2:RF采样接收器架构

该RF采样架构为系统设计人员提供了新的可能性 —— 最显著增高的带宽和更多的灵活性。RF采样数据转换器可支持更高的带宽,这能实现更高的数据传输速率。该架构还可提供更多的灵活性。无需模拟调谐,即可在RF频带的任何地方轻松捕获想得到的信号。实际上,甚至没必要知道该信号的确切位置。整个频谱均能被捕获,然后可在该处理器中以数字的方式提取特定信号。此外,减少组件数量还能降低功耗并缩减成本。

4-GSPS ADC12J4000等RF采样数据转换器支持较高密度的系统,这类系统可利用波束赋形天线或块状天线阵列(其中通道数量有所增加)。该架构正为现在更灵活、成本更低效益更高的解决方案以及适用于下一代系统、数据速率更高且容量更大的新型系统铺平道路。


第二篇文章 射频(RF)采样:过采样在如何逃脱物理学定律的束缚

RF采样转换器可捕获高频信号和大带宽信号;但是,并非每种应用都能利用需要极高速采样的信号。就带宽或输出频率不过高的情况而言,利用RF采样转换器的高采样速率能力仍存在一大优势。

采样定理规定,采样速率必须至少是信号最大带宽的两倍。低于该速率的采样被称为欠采样,会引起混叠现象;笔者的上一篇博客讨论了这种方法的好处。高于该速率的采样被称为过采样。过采样可提供一些看似能让您无视物理学定律的处理优势。

模数转换器(ADC)的关键测量参数之一是信噪比(SNR)。SNR可衡量所需信号功率与第一奈奎斯特区内全部噪声功率之间的相对电平。该奈奎斯特区的带宽等于采样速率除以2(Fs/2)。要记得,所有信号和噪声均会折返到第一奈奎斯特区。该区实际上代表了该器件的整个带宽。

过采样的一大好处是,图像分量可在频率空间里被进一步分离。这允许更轻松的模拟滤波,以便消除能向下混叠到被捕获的带宽范围内并降低接收器灵敏度的干扰信号。图1展示了两个实例:一种以接近奈奎斯特速率的速率采样的信号以及一种被过采样的信号。在被过采样的实例中,模拟抗混叠滤波器更易实现。


图1:滤波器对奈奎斯特速率采样与过采样的影响

过采样可不受理论量化噪声限制来改善该器件的SNR性能。这种量化噪声跨奈奎斯特带宽均匀分布。通过提高采样速率,同样的量化噪声被分散在更大的奈奎斯特带宽范围内。所需的信号保持不变。抽取与数字滤波相结合可降低噪声带宽,却不会对所需的信号造成影响。注意,抽取意味着过采样,因为必须有可供移除的其它样本。在RF采样ADC中,更常提及的是抽取因子,而非过采样速率;但这些参数实际上是等效的。

例如,要使抽取因子为2,必须让信号的过采样因子至少为2。在这个例子中,信号功率保持不变,但奈奎斯特带宽被减半。这就消除了一半的噪声功率,从而让该ADC的SNR增加了3dB。第一个方程式表示因量化噪声得到的理想SNR,其中N是该转换器的位数。第二个方程式则表示与抽取因子D相关的SNR改善值。

根据纯量化噪声分析,采样速率每提高三倍(即增至原来的四倍),可让分辨率增加一个有效位。从理论上讲,通过以16倍于最小奈奎斯特速率的速率采样,12位数据转换器可实现14位转换器的SNR性能。在实践中,由于和孔径抖动、时钟抖动及热噪声相关的其它损害,RF采样数据转换器无法实现与量化噪声限值相当的SNR性能;但是,过采样技术仍能提供几乎完全一样的相关SNR改善值。在许多通信系统中,这一好处是至关重要的。例如,ADS54J60是一款16位、1GSPS的ADC,它拥有抽取因子为2或4的选项。为改善SNR性能,设计人员可做出提高采样速度并采用抽取技术的决定。

下一篇将讨论RF采样数据转换器中的数字混频器。


第三篇文章 射频(RF)采样:数字混频器能使混频操作妙趣横生

采用传统的收发器架构,数据转换器工作时支持低频模拟信号。在该队列的其它地方要有附加的模拟混频器,以便将较低的频率转换成较高的频率或将较高的频率转换成较低的频率。而使用RF采样数据转换器,则可在高频率下直接生成或接收模拟信号。这些数据转换器配备了数字混频器,可将基带信号移入或移出要求的高频率位置。为简单起见,笔者将集中讨论数模转换器(DAC),但是这些理念在信号流方向相反的模数转换器(ADC)中是同等重要的。有两个适用于数字混频器的主要选项:从真实数字输入到真实数字输出或从复杂数字输入到真实数字输出。图1展示了DAC中的这两个选项。


图1:真实数字混频器和复杂数字混频器

复杂混频器更有利,因为输入I和Q数据可占用输出信号带宽的一半,图像及载波分量自然而然会受到抑制。与其模拟对应产品不同的是,数字混频器近乎完美,因此不存在能转化为不完善边带抑制或载波馈通的瑕疵。

数字混频器像其模拟对应产品一样,需要适用于混频操作的振荡器信号源。一种轻松的实施方法是使用基于该数据转换器采样时钟的固定频率。使用固定振荡器频率、采样速率被4除(Fs/4)的粗调混频器非常容易实现。该复杂混频器将I和Q输入数据乘以正交音调:余弦和正弦。当采用Fs/4混频时,乘法因子可简化为1、0或-1:无需实际的乘法运算。通过在I/Q数据流内提取合适的数据点,您可得到输出 —— 这是一种能最大限度降低电流消耗的简单方法。图2展示了Fs/4混频操作和输出模式。


图2:适用于复杂Fs/4混频操作的输出模式

当您需要更多灵活性时,数控振荡器(NCO)可提供这种振荡器功能。该NCO经过编程,可处于该器件奈奎斯特区内的任意频率下。这就允许信号通过软件被移动到任意的RF频带。该NCO可使用快速查找表来创建振荡器信号。常见的实施方案利用可提供子赫兹级频率分辨率的32位至48位NCO。此外,该混频器还具有相位调整功能。图3是该NCO的方框图。


图3:48位NCO方框图

与其模拟对应产品相比,数字混频器可提供更卓越的性能。用户可即时为精确的频率输出进行编程,无需硬件改装。像DAC38J84这样的DAC可采用适合发射器的所有粗调与精调混频器选项。而像ADC12J4000这样的ADC则包含一个适合在接收器上使用的复杂混频器。

为了在软件定义架构中增加灵活性,该转换器可使用多个数字混频器,以便让多种信号能在频率范围内独立地移动。这可提供非常轻松地支持多频带应用并根据需要实时更改频带的机会。


第四篇 射频采样:频率规划产生洁净频谱

你认为你的射频 (RF) 采样设计运行的还不错,其原因在于你选择了合适的器件,并且定义了时钟源。不过先等一等;你所要完成的工作还远非如此。在不进行适当的频率规划,以确保谐波或时钟混合杂散中产生出洁净频谱的情况下,即使是最好的器件也会造成性能下降。我在上一篇博文中讨论了与交错转换器有关的某些缺陷。频率规划始终是良好收发器设计的一部分,不过RF采样更加关键,这是因为信号一直处于所需的频率频带范围内。与其它具有中间频率 (IF) 或基频级 (BB) 的配置不同,RF采样架构不具有清洁频谱的窄频带通道滤波功能。

在这些发射器中,管理要求将严格限制杂散乘积的等级,使其落在所需频带内,并且刚好在频带外。这些转换器内产生的杂散乘积在到达功率放大器 (PA) 之前无法被有效过滤掉。一旦受到辐射,这些乘积就有可能干扰其它用户。

用一个RF采样数模转换器 (DAC) 进行的频率规划确保了折返回第一那奎斯特区域内的谐波含量不在所需频带之内,或者在其附近。针对指定应用的频带是固定的;它是不可调节的,不过你可以调节转换器的采样率。增加采样速率可以生成一个更大的那奎斯特区域;然而,这并不能确保一个最优方案。

发射器频率规划示例

我们来看一个发射器示例,它的运行频率为2.14GHz,信号宽度为60MHz。图1显示的是具有8024MHz高频时钟速率的第一那奎斯特区域频谱。在这个速率下,所需要的频带(用蓝色标出)很清楚,但是第三和第四阶谐波,以及已知的杂散(用黄色标出)位于所需的频带附近。这些杂散积很难被过滤掉。

图1b显示的是同一频率,不过时钟速率减少为5683.2MHz。在这个时钟速率下,高阶谐波或者时钟混合杂散都不会位于所需频带的附近。在这个示例中,较低采样率方法比较适用,这是因为你可以轻松地将高阶杂散滤除掉。


图1:时钟频率为8024MHz (a) 和5683.2MHz (b) 时的频谱图

接收器频率规划示例

对于接收器来说,频率规划目标稍微不同。源自带内和带外信号的干扰会严重影响接收器的灵敏度。通过在RF输入端上进行适当的限带滤波,你可以最大限度地降低其它用户信号或发射器干扰所形成的带外干扰源。你无法过滤掉带内干扰源。频率规划确保来自带内干扰源的谐波含量不会折返回所需频带的内部。与发射器的情况不同,恰恰折返回频带外部的谐波含量不是一个问题。

图2显示的是一个100MHz宽的信号,在中央频率为1950MHz的频带范围内运行。时钟频率为6144MHz。在这个配置中,所有这些较高阶谐波都位于频带外部。第二和第四谐波很接近,但是不在频带内部。这是一个传统低IF架构所不能比拟的。使用同样信号带宽运行的较低采样率模数转换器 (ADC) 无法实现一个干净的频谱,这是因为折返谐波覆盖了整个那奎斯特区域。


图2:时钟频率为6144MHz,中央频率1950MHz频带范围内,频带宽度为100MHz时的频谱图

你可以修改时钟频率来在所需频率发生变化时保持一个洁净频谱。在使用传统架构时,对于频率规划的调整需要你修改合成器和IF或基带滤波器级。只需调节采样率,RF采样架构就可实现简单频率规划调整。由于在不同频带下运行只需要对时钟频率进行调节,RF采样架构可以很轻松地适应不同频带和应用的要求。


文/RJ Hopper
来源:TI社区

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多