2000年早期,Robbie Allen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,Youtube还不是很普遍,Quora、 Twitter和播客同样用者甚少。 在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习! 为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,你将会对人工智能和机器学习有一个基本的认知。 这些资源内容安排如下:知名研究者,研究机构,视频课程,YouTube,博客,媒体作家,书籍,Quora主题栏,Reddit,Github库,播客, 实事通讯媒体、会议、论文。 如果你也有好的资源是这里没有列出的,欢迎评论区一起交流! 研究者 大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,维基百科链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。 Sebastian Thrun 个人官网: http://robots./ Wikipedia: https://en./wiki/Sebastian_Thrun Twitter: https://twitter.com/SebastianThrun Google Scholar: https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao Quora: https://www./profile/Sebastian-Thrun Reddit AMA: https://www./r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/
Yann LeCun 个人官网: http://yann./ Wikipedia: https://en./wiki/Sebastian_Thrun Twitter: https://twitter.com/ylecun? Google Scholar: https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en Quora: https://www./profile/Yann-LeCun Reddit AMA: http://www./r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
Nando de Freitas 个人官网: http://www.cs./~nando/ Wikipedia: https://en./wiki/Nando_de_Freitas Twitter: https://twitter.com/NandoDF Google Scholar: https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en Reddit AMA: http://www./r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
Andrew Ng 个人官网: http://www./ Wikipedia: https://en./wiki/Andrew_Ng Twitter: https://twitter.com/AndrewYNg Google Scholar: https://scholar.google.com/citations?use Quora: https://www./profile/Andrew-Ng' Reddit AMA: http://www./r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
Daphne Koller 个人官网: http://ai./users/koller/ Wikipedia: https://en./wiki/Daphne_Koller Twitter: https://twitter.com/DaphneKoller?lang=en Google Scholar: https://scholar.google.com/citations?user=5Iqe53IAAAAJ Quora: https://www./profile/Daphne-Koller Quora Session: https://www./session/Daphne-Koller/1
Adam Coates 个人官网: http://cs./~acoates/ Twitter: https://twitter.com/adampaulcoates Google Scholar: https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en' Reddit AMA: http://www./r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
Jürgen Schmidhuber 个人官网: http://people./~juergen/ Wikipedia: https://en./wiki/J%C3%BCrgen_Schmidhuber Google Scholar: https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en Reddit AMA: http://www./r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/
Geoffrey Hinton 个人官网: Wikipedia: https://en./wiki/Geoffrey_Hinton Google Scholar: http://www.cs./~hinton/ Reddit AMA: http://www./r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/
Terry Sejnowski 个人官网: http://www./scientist/terrence-sejnowski/ Wikipedia: https://en./wiki/Terry_Sejnowski Twitter: https://twitter.com/sejnowski?lang=en Google Scholar: https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en Reddit AMA: https://www./r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/
Michael Jordan 个人官网: https://people.eecs./~jordan/ Wikipedia: https://en./wiki/Michael_I._Jordan Google Scholar: https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en' Reddit AMA: http://www./r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
Peter Norvig 个人官网: http:/// Wikipedia: https://en./wiki/Peter_Norvig Google Scholar: https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en Reddit AMA: https://www./r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/
Yoshua Bengio 个人官网: http://www.iro./~bengioy/yoshua_en/ Wikipedia: https://en./wiki/Yoshua_Bengio Google Scholar: https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en Quora: https://www./profile/Yoshua-Bengio Reddit AMA: http://www./r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/
Ina Goodfellow 个人官网: http://www./ Wikipedia: https://en./wiki/Ian_Goodfellow Twitter: https://twitter.com/goodfellow_ian Google Scholar: https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en Quora: https://www./profile/Ian-Goodfellow Quora Session: https://www./session/Ian-Goodfellow/1
Andrej Karpathy 个人官网: http://karpathy./ Twitter: https://twitter.com/karpathy Google Scholar: https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en Quora: https://www./profile/Andrej-Karpathy Quora Session: https://www./session/Andrej-Karpathy/1
Richard Socher 个人官网: http://www./ Twitter: https://twitter.com/RichardSocher Google Scholar: https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en Interview: http://www./2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html
Demis Hassabis 个人官网: http:/// Wikipedia: https://en./wiki/Demis_Hassabis Twitter: https://twitter.com/demishassabis Google Scholar: https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en Interview: https://www./features/2016-demis-hassabis-interview-issue/
Christopher Manning 个人官网: https://nlp./~manning/ Twitter: https://twitter.com/chrmanning Google Scholar: https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en'
Fei-Fei Li 个人官网: http://vision./people.html Wikipedia: https://en./wiki/Fei-Fei_Li Twitter: https://twitter.com/drfeifei Google Scholar: https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en' Ted Talk: https://www./talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/transcript?language=en
Fran?ois Chollet 个人官网: https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en Twitter: https://twitter.com/fchollet Google Scholar: https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en Quora: https://www./profile/Fran%C3%A7ois-Chollet Quora Session: https://www./session/Fran%C3%A7ois-Chollet/1
Dan Jurafsky 个人官网: https://web./~jurafsky/ Wikipedia: https://en./wiki/Daniel_Jurafsky Twitter: https://twitter.com/jurafsky Google Scholar: https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en
Oren Etzioni 个人官网: http:///team/orene/ Wikipedia: https://en./wiki/Oren_Etzioni Twitter: https://twitter.com/etzioni Google Scholar: https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en Quora: https://scholar.google.com/citations?user Reddit AMA: https://www./r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/
机构 网络上有大量的知名机构致力于推进人工智能领域的研究和发展。 以下列出的是同时拥有官方网站/博客和推特账号的机构。 OpenAI 官网:https:/// Twitter:https://twitter.com/OpenAI
DeepMind 官网:https:/// Twitter:https://twitter.com/DeepMindA
Google Research 官网:https://research./ Twitter:https://twitter.com/googleresearch
AWS AI 官网:https://aws.amazon.com/blogs/ai/ Twitter:https://twitter.com/awscloud
Facebook AI Research 官网:https://research./category/facebook-ai-research-fair/
Microsoft Research 官网:https://www.microsoft.com/en-us/research/ Twitter:https://twitter.com/MSFTResearch
Baidu Research 官网:http://research.baidu.com/ Twitter:https://twitter.com/baiduresearch?lang=en
IntelAI 官网:https://software.intel.com/en-us/ai Twitter:https://twitter.com/IntelAI
AI2 官网:http:/// Twitter:https://twitter.com/allenai_org
Partnership on AI 官网:https://www./ Twitter:https://twitter.com/partnershipai
视频课程 以下列出的是一些免费的视频课程和教程。 Coursera?—?Machine Learning (Andrew Ng): https://www./learn/machine-learning#syllabus Coursera?—?Neural Networks for Machine Learning (Geoffrey Hinton): https://www./learn/neural-networks Udacity?—?Intro to Machine Learning (Sebastian Thrun): https://classroom./courses/ud120 Udacity?—?Machine Learning (Georgia Tech): https://www./course/machine-learning--ud262 Udacity?—?Deep Learning (Vincent Vanhoucke): https://www./course/deep-learning--ud730 Machine Learning (mathematicalmonk): https://www./playlist?list=PLD0F06AA0D2E8FFBA Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas): http://course./start.html Stanford CS231n?—?Convolutional Neural Networks for Visual Recognition (Winter 2016) : https://www./watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA (class link):http://cs231n./ Stanford CS224n?—?Natural Language Processing with Deep Learning (Winter 2017) : https://www./playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6 (class link):http://web./class/cs224n/ Oxford Deep NLP 2017 (Phil Blunsom et al.): https://github.com/oxford-cs-deepnlp-2017/lectures Reinforcement Learning (David Silver): http://www0.cs./staff/d.silver/web/Teaching.html Practical Machine Learning Tutorial with Python (sentdex): https://www./watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
YouTube 以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下: sentdex (225K subscribers, 21M views): https://www./user/sentdex Artificial Intelligence A.I. (7M views): https://www./channel/UC-XbFeFFzNbAUENC8Ofpn3g Siraj Raval (140K subscribers, 5M views): https://www./channel/UCWN3xxRkmTPmbKwht9FuE5A Two Minute Papers (60K subscribers, 3.3M views): https://www./user/keeroyz DeepLearning.TV (42K subscribers, 1.7M views): https://www./channel/UC9OeZkIwhzfv-_Cb7fCikLQ Data School (37K subscribers, 1.8M views): https://www./user/dataschool Machine Learning Recipes with Josh Gordon (324K views): https://www./playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal Artificial Intelligence?—?Topic (10K subscribers): https://www./channel/UC9pXDvrYYsHuDkauM2fLllQ Allen Institute for Artificial Intelligence (AI2) (1.6K subscribers, 69K views): https://www./channel/UCEqgmyWChwvt6MFGGlmUQCQ Machine Learning at Berkeley (634 subscribers, 48K views): https://www./channel/UCXweTmAk9K-Uo9R6SmfGtjg Understanding Machine Learning?—?Shai Ben-David (973 subscribers, 43K views): https://www./channel/UCR4_akQ1HYMUcDszPQ6jh8Q Machine Learning TV (455 subscribers, 11K views): https://www./channel/UChIaUcs3tho6XhyU6K6KMrw
博客 Andrej Karpathy 博客:http://karpathy./ Twitter:https://twitter.com/karpathy
i am trask 博客:http://iamtrask./ Twitter:https://twitter.com/iamtrask
Christopher Olah 博客:http://colah./ Twitter:https://twitter.com/ch402
Top Bots 博客:http://www./ Twitter:https://twitter.com/topbots
WildML 博客:http://www./ Twitter:https://twitter.com/dennybritz
Distill 博客:http:/// Twitter:https://twitter.com/distillpub
Machine Learning Mastery 博客:http:///blog/ Twitter:https://twitter.com/TeachTheMachine
FastML 博客:http:/// Twitter:https://twitter.com/fastml_extra
Adventures in NI 博客:https://joanna-bryson./ Twitter:https://twitter.com/j2bryson
Sebastian Ruder 博客:http:/// Twitter:https://twitter.com/seb_ruder
Unsupervised Methods 博客:http:/// Twitter:https://twitter.com/RobbieAllen
Explosion 博客:https:///blog/ Twitter:https://twitter.com/explosion_ai
Tim Dettwers 博客:http:/// Twitter:https://twitter.com/Tim_Dettmers
When trees fall... 博客:http://blog./ Twitter:https://twitter.com/tanshawn
ML@B 博客:https://ml./blog/ Twitter:https://twitter.com/berkeleyml
媒体作家 以下是一些人工智能领域方向顶尖的媒体作家。 Robbie Allen: https:///@robbieallen Erik P.M. Vermeulen: https:///@erikpmvermeulen Frank Chen: https:///@withfries2 azeem: https:///@azeem Sam DeBrule: https:///@samdebrule Derrick Harris: https:///@derrickharris Yitaek Hwang: https:///@yitaek samim: https:///@samim Paul Boutin: https:///@Paul_Boutin Mariya Yao: https:///@thinkmariya Rob May: https:///@robmay Avinash Hindupur: https:///@hindupuravinash
书籍 以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。 机器学习 Understanding Machine Learning From Theory to Algorithms: http://www.cs./~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf Machine Learning Yearning: http://www./ A Course in Machine Learning: http:/// Machine Learning: https://www./books/machine_learning Neural Networks and Deep Learning: http:/// Deep Learning Book: http://www./ Reinforcement Learning: An Introduction: http:///sutton/book/the-book-2nd.html Reinforcement Learning: https://www./books/reinforcement_learning
自然语言处理 Speech and Language Processing (3rd ed. draft): https://web./~jurafsky/slp3/ Natural Language Processing with Python: http://www./book/ An Introduction to Information Retrieval: https://nlp./IR-book/html/htmledition/irbook.html
数学 Introduction to Statistical Thought: http://people.math./~lavine/Book/book.pdf Introduction to Bayesian Statistics: https://www.stat./~brewer/stats331.pdf Introduction to Probability: https://www./~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf Think Stats: Probability and Statistics for Python programmers: http:///wp/think-stats-2e/ The Probability and Statistics Cookbook: http:/// Linear Algebra: http://joshua./linearalgebra/book.pdf Linear Algebra Done Wrong: http://www.math./~treil/papers/LADW/book.pdf Linear Algebra, Theory And Applications: https://math./~klkuttle/Linearalgebra.pdf Mathematics for Computer Science: https://courses.csail./6.042/spring17/mcs.pdf Calculus: https://ocw./ans7870/resources/Strang/Edited/Calculus/Calculus.pdf Calculus I for Computer Science and Statistics Students: http://www.math./~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Quora Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,你可以订阅如果你想跟进这些内容。 Computer-Science (5.6M followers): https://www./topic/Computer-Science Machine-Learning (1.1M followers): https://www./topic/Machine-Learning Artificial-Intelligence (635K followers): https://www./topic/Artificial-Intelligence Deep-Learning (167K followers): https://www./topic/Deep-Learning Natural-Language-Processing (155K followers): https://www./topic/Natural-Language-Processing Classification-machine-learning (119K followers): https://www./topic/Classification-machine-learning Artificial-General-Intelligence (82K followers) https://www./topic/Artificial-General-Intelligence Convolutional-Neural-Networks-CNNs (25K followers): https://www./topic/Artificial-General-Intelligence Computational-Linguistics (23K followers): https://www./topic/Computational-Linguistics Recurrent-Neural-Networks (17.4K followers): https://www./topic/Recurrent-Neural-Networks
Reddit Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。 /r/MachineLearning (111K readers): https://www./r/MachineLearning /r/robotics/ (43K readers): https://www./r/robotics/ /r/artificial (35K readers): https://www./r/artificial /r/datascience (34K readers): https://www./r/datascience /r/learnmachinelearning (11K readers): https://www./r/learnmachinelearning /r/computervision (11K readers): https://www./r/computervision /r/MLQuestions (8K readers): https://www./r/MLQuestions /r/LanguageTechnology (7K readers): https://www./r/LanguageTechnology /r/mlclass (4K readers): https://www./r/mlclass /r/mlpapers (4K readers): https://www./r/mlpapers
Github 人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。 Machine Learning (6K repos): https://github.com/search?o=desc&q=topic%3Amachine-learning &s=stars&type=Repositories&utf8=%E2%9C%93 Deep Learning (3K repos): https://github.com/search?q=topic%3Adeep-learning&type=Repositories Tensorflow (2K repos): https://github.com/search?q=topic%3Atensorflow&type=Repositories Neural Network (1K repos): https://github.com/search?q=topic%3Atensorflow&type=Repositories NLP (1K repos): https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories
播客 对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。 ConcerningAI 官网: https:/// iTunes: https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211
This Week in Machine Learning and AI 官网: https:/// iTunes: https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2
The AI Podcast 官网: https://blogs./ai-podcast/ iTunes: https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811
Data Skeptic 官网: http:/// iTunes: https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705
Linear Digressions 官网: https://itunes.apple.com/us/podcast/linear-digressions/id941219323 iTunes: https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2
Partially Dervative 官网: http:/// iTunes: https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2
O'Reilly Data Show 官网: http://radar./tag/oreilly-data-show-podcast iTunes: https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220
Learning Machines 101 官网: http://www./ iTunes: https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2
The Talking Machines 官网: http://www./ iTunes: https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2
Artificial Intelligence in Industry 官网:
http:/// iTunes: https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2
Machine Learning Guide 官网 http:///podcasts/machine-learning https://itunes.apple...iTunes: https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2
时事通讯媒体 如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。 The Exponential View: https://www./profile/azeem AI Weekly: http:/// Deep Hunt: https:/// O’Reilly Artificial Intelligence Newsletter: http://www./ai/newsletter.html Machine Learning Weekly: http:/// Data Science Weekly Newsletter: https://www./ Machine Learnings: http://subscribe./ Artificial Intelligence News: http:/// When trees fall…: https:///p/GVBR82UWhWb9 WildML: https:///p/PoZVx95N9RGV Inside AI: https:///technically-sentient Kurzweil AI: http://www./create-account Import AI: https:///import-ai/ The Wild Week in AI: https://www./profile/wildml Deep Learning Weekly: http://www./ Data Science Weekly: https://www./ KDnuggets Newsletter: http://www./news/subscribe.html?qst
会议 随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。 学术会议 NIPS (Neural Information Processing Systems): https:/// ICML (International Conference on Machine Learning): https://2017. KDD (Knowledge Discovery and Data Mining): http://www./ ICLR (International Conference on Learning Representations): http://www./ ACL (Association for Computational Linguistics): http:/// EMNLP (Empirical Methods in Natural Language Processing): http:/// CVPR (Computer Vision and PatternRecognition): http://cvpr2017./ ICCF(InternationalConferenceonComputerVision): http://iccv2017./
专业会议 O’Reilly Artificial Intelligence Conference: https://conferences./artificial-intelligence/ Machine Learning Conference (MLConf): http:/// AI Expo (North America, Europe, World): https://www./ AI Summit: https:/// AI Conference: https://aiconference./helloworld/
论文 arXiv.org上特定领域论文集: Artificial Intelligence: https:///list/cs.AI/recent Learning (Computer Science): https:///list/cs.LG/recent Machine Learning (Stats): https:///list/stat.ML/recent NLP: https:///list/cs.CL/recent Computer Vision: https:///list/cs.CV/recent
Semantic Scholar搜索结果: Neural Networks (179K results): https://www./search?q=%22neural%20networks%22&sort=relevance&ae=false Machine Learning (94K results): https://www./search?q=%22machine%20learning%22&sort=relevance&ae=false Natural Language (62K results): https://www./search?q=%22natural%20language%22&sort=relevance&ae=false Computer Vision (55K results): https://www./search?q=%22natural%20language%22&sort=relevance&ae=false Deep Learning (24K results): https://www./search?q=%22deep%20learning%22&sort=relevance&ae=false
此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。 http://www./
作者:Robbie Allen 原文:https:///my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524
|