分享

水泵的工作原理是什么?

 电车 2017-09-18


感谢邀请,简单来说水泵的原理就是通过机械或仿生运动促使水流流动。泵有两种基本类型:正位移和离心。虽然轴流泵通常被分类为单独的类型,但它们具有与离心泵基本相同的操作原理。

水泵按使水产生流动的方式分类主要有:容积式泵,脉冲泵,速度泵,重力泵,蒸汽泵和无阀泵。

容积式泵

容积式泵通过捕获固定量的流体,迫使其(置换)进入排出管,使流体移动。一些容积式泵在吸入侧使用扩张腔,在排放侧使用减小的腔。当吸入侧的空腔膨胀时,液体流入泵中,并且当腔体塌陷时液体流出排出液体。

容积式泵还可以细分

  • 旋转式:内齿轮,螺杆,梭块,柔性叶片或滑动叶片,圆周活塞,柔性叶轮,螺旋扭绞根或液环泵
  • 往复式:活塞泵,柱塞泵或隔膜泵
  • 线性:绳索泵和链式泵

旋转式容积泵

使用旋转机构使流体移动,并能自然地从管线中去除空气。

△图为旋转容积式泵

旋转容积泵下还可以进行细分

  • 齿轮泵 : 一种简单类型的旋转泵,液体在两个齿轮之间推动。
  • 螺杆泵 :这种泵的内部形状通常是两个相互靠在一起的螺杆来泵送液体。
  • 旋转叶片泵:它们具有包装在类似形状的壳体中的圆柱形转子。当转子运动时,叶片在转子和壳体之间压缩流体,使其产生压差定向流动。

往复式容积

使用一个或多个摆动活塞,柱塞或膜(隔膜)推动动流体,同时阀将流体运动限制在所需方向。泵首先将柱塞向外运动以减小腔室中的压力,水流被吸入。柱塞推回,增加压力打开排出阀,将流体释放到输送管中。

△图为手动活塞泵

往复式泵同样进一步细分

  • 柱塞泵 - 往复式柱塞推动流体通过一个或两个打开的阀,通过吸气在关闭的路上关闭。
  • 隔膜泵 - 类似于柱塞泵,其中柱塞对用于在泵缸中弯曲膜片的液压油进行加压。隔膜阀用于泵送有毒和有毒的液体。
  • 活塞泵排量泵 - 通常是手动泵送少量液体或凝胶的简单装置。普通的洗手液是这样一台泵。
  • 径向活塞泵
△图为齿轮泵

最简单的旋转容积式泵。它由两个啮合的齿轮组成,其在紧密配合的壳体中旋转。齿轮泵广泛用于汽车发动机油泵和各种液压动力单元。

△图为螺杆泵

螺杆泵广泛用于泵送困难物料,如污染污染大颗粒的污泥,轴旋转时,转子逐渐将流体向上推动到橡胶套上。这种泵可以在低体积下产生非常高的压力。

△图为叶瓣泵

叶瓣泵将两个长螺旋转子之间的液体置换,当两个长螺旋转子之间垂直于90°旋转时,它们在三角形密封线结构内旋转,如图通过旋转将一部分液体转换位置。该设计产生具有相等体积和无涡流的连续流动。它可以低脉动率工作,有点类似心脏。

△图为360°蠕动泵

蠕动泵包含一个安装在圆形泵壳内的柔性管。当转子转动时,压缩管的部分关闭(或堵塞),迫使流体通过管。另外,当管子通过凸轮之后,当管子处于其自然打开状态,将流体吸入到泵中。这个过程称为蠕动,许多生物系统都利用这种方式运输水流,如胃肠道。

△图为绳泵

1000多年前我们的先人就发明了这种泵,松散吊绳被降低到井中,并通过长管浸入水中。在绳索上有很多与管道直径相匹配的圆盘或结,他们能密闭一段水柱,并将水柱拉上来。

脉冲泵

脉冲泵使用由气体(通常是空气)产生的压力。在一些脉冲泵中,滞留在液体(通常是水)中的气体被释放并积聚在泵的某处,产生可以将部分液体向上推的压力。

△图为离心泵

离心泵

通过增加流速将动能添加到流体。当流体流出排出管道之前或当流体离开泵进入排放管道时,能量的这种增加转化为势能(压力)的增量。动能转化为压力由热力学第一定律,或更具体地由伯努利原理解释。

热力学第一定律(the first law of thermodynamics)
不同形式的能量在传递与转换过程中守恒的定律,表达式为Q=△U+W。表述形式:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
伯努利的原理(Bernoulli''s principle
在流体动力学中,伯努利的原理指出,流体的速度的增加与压力的降低或流体的势能的减少同时发生。

重力泵

重力泵包括虹吸管和Heron喷泉。液压柱塞有时也被称为重力泵; 在重力泵中,水被重力提升。

虹吸原理想必大家不陌生吧传说中的Heron喷泉

当泵的类型远远不止这么几种,有兴趣的朋友可以翻阅相关书籍。

按叶轮数还可以分为
单级泵:当在套管中只有一个叶轮旋转时,称为单级泵。
双/多级泵:当在一个外壳中有两个或两个以上的叶轮旋转时,称为双/多级泵。

在现代生物学领域,许多不同类型的化学和生物机械泵已经发展,生物仿真有时用于开发新型机械泵。

泵属于流体机械的一种,流体机械是指以流体为工作介质和能量载体的机械设备。流体机械根据能量传递的方向不同,可分为原动机(水轮机、汽轮机)和工作机(泵、风机、压缩机)。泵属于工作机,即消耗能量的机械。

从泵的性能范围看,巨型泵的流量每小时可达几十万立方米以上,而微型泵的流量每小时则在几十毫升以下;泵的压力可从常压到高19.61Mpa(200kgf/cm2)以上;被输送液体的温度最低达-200摄氏度以下,最高可达800摄氏度以上。泵输送液体的种类繁多,诸如输送水(清水、污水等)、油液、酸碱液、悬浮液、和液态金属等。

在化工和石油部门的生产中,原料、半成品和成品大多是液体,而将原料制成半成品和成品,需要经过复杂的工艺过程,泵在这些过程中起到了输送液体和提供化学反应的压力流量的作用,此外,在很多装置中还用泵来调节温度。

泵的操作原理、构造及分类

1)工作原理可分为又分为叶片式、容积式和其它形式。

①叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液体,使液体的动能(为主)和压力能增加,随后通过压出室将动能转换为压力能,又可分为离心泵、轴流泵、部分流泵和旋涡泵等。

②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周期性地传递给液体,使液体的压力增加至将液体强行排出,根据工作元件的运动形式又可分为往复泵和回转泵。

③其他类型的泵,以其他形式传递能量。如射流泵依靠高速喷射的工作流体将需输送的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动时流动中的部分水被升到一定高度传递能量;电磁泵是使通电的液态金属在电磁力作用下产生流动而实现输送。另外,泵也可按输送液体的性质、驱动方法、结构、用途等进行分类。

2)按工作叶轮数目来分类

① 单级泵:即在泵轴上只有一个叶轮。② 多级泵:即在泵轴上有两个或两个以上的叶轮,这时泵的总扬程为n个叶轮产生的扬程之和。

3)按工作压力来分类

① 低压泵:压力低于100米水柱;② 中压泵:压力在100~650米水柱之间;③ 高压泵:压力高于650米水柱。(多级离心泵可达2800m)

4)按叶轮进水方式来分类

① 单侧进水式泵:又叫单吸泵,即叶轮上只有一个进水口;② 双侧进水式泵:又叫双吸泵,即叶轮两侧都有一个进水口。它流量比单吸式泵大一倍,可以近似看作是二个单吸泵叶轮背靠背地放在了一起。

5)按泵壳结合缝形式来分类① 水平中开式泵:即在通过轴心线的水平面上开有结合缝。(最常见的水平中开泵是双吸泵)② 垂直结合面泵:即结合面与轴心线相垂直。6)按泵轴位置来分类① 卧式泵:泵轴位于水平位置。② 立式泵:泵轴位于垂直位置。

7)按叶轮出来的水引向压出室的方式分类

① 蜗壳泵:水从叶轮出来后,直接进入具有螺旋线形状的泵壳。② 导叶泵:水从叶轮出来后,进入它外面设置的导叶,之后进下一级或流入出口管。(常用于多级泵和轴流泵)

一、操作原理

由若干个弯曲的叶片组成的叶轮置于具有蜗壳通道的泵壳之内。叶轮紧固于泵轴上,泵轴与电机相连,可由电机带动旋转。吸入口位于泵壳中央与吸入管路相连,并在吸入管底部装一止逆阀。泵壳的侧边为排出口,与排出管路相连,装有调节阀。

离心泵之所以能输送液体,主要是依靠高速旋转叶轮所产生的离心力,因此称为离心泵。

离心泵的工作过程:

开泵前,先在泵内灌满要输送的液体。

开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向叶轮外周,压力增高,并以很高的速度流入泵壳。在泵壳中由于流道的不断扩大,液体的流速减慢,使大部分动能转化为压力能。最后液体以较高的静压强从排出口流入排出管道。泵内的液体被抛出后,叶轮的中心形成了真空,在液面压强(大气压)与泵内压力(负压)的压差作用下,液体便经吸入管路进入泵内,填补了被排除液体的位置。

离心泵启动时,如果泵壳内存在空气,由于空气的密度远小于液体的密度,叶轮旋转所产生的离心力很小,叶轮中心处产生的低压不足以造成吸上液体所需要的真空度,这样,离心泵就无法工作。为了使启动前泵内充满液体,在吸入管道底部装一止逆阀。此外,在离心泵的出口管路上也装一调节阀,用于开停车和调节流量。

二、基本部件和构造

1)叶轮

将电动机的机械能传给液体,使液体的动能有所提高。

2)泵壳

汇集液体,作导出液体的通道;

使液体的能量发生转换,一部分动能转变为静压能。

3)轴封装置

为了防止高压液体从泵壳内沿轴的四周而漏出,或者外界空气漏入泵壳内。

工作压力和密封

填料密封水泵:最大工作压力 4-5 bar。(标准规格)

机械密封水泵:

水泵最大工作压力 <10 bar 时:不平衡机械密封 (标准)

水泵最大工作压力>10bar时: 平衡机械密封(额定值与密封的结构有关)

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多