BA无边度网络模型构造算法
(1)增长:从一个具有 m_0 个节点的联通网络开始,每次引入一个新的节点, 并且连到 m 个已经存在的节点上,这里 m <= m_0。
(2)优先连接:一个新的节点与一个已经存在的节点 i 相连的概率 w 与节点 i 的度 k_i 之间的关系为 w = k_i / ( k_1 + k_2 + k_3 + ... + k_n ),其中n为网络中的节点的总个数。
特别的说明下代码中涉及到结构体Node的作用和思路:
三个数据域:
(1) degree:表示节点的度
(2) weight:表示被选择的概率,即 w_i = k_i / ( k_1 + k_2 + ... + k_n )
(3) probabilityDistribution: 给出每一个节点的概率分布,作用是通过产生0~1之间的随机数来做出决策。
为什么在有了weight的情况下还需要用probabilityDistribution?
example: 假设在一个网络中一共有5个节点,每个节点的度如下: d_1 = 4, d_2 = 1, d_3 = 2, d_4 = 2, d_5 = 1.
那么可以计算出每个节点的weight如下: w_1 = 0.4, w_2 = 0.1, w_3 = 0.2, w_4 = 0.2, w_5 = 0.1
也就是说, 当有一个新的节点出现时候,它连接到节点1的概率为0.4,连接到节点2的概率为0.1, ...
可以用下图来表示:

这个时候,这个新的节点要选择已有网络中的那个节点连接是随机的,但是和这些已有节点的度是成正比的,度愈大的节点越有可能被连接,此时,由系统产生一个 0~1 之间的随机数,比如0.6,那么则选择新的节点与节点 3 相连。
代码实现
- #include<stdio.h>
- #include<stdlib.h>
- #include<time.h>
- #include<string.h>
- #include "for_plot.c"
-
- int NETWORK_SIZE, M, M_0;
-
- struct Node;
- typedef struct Node* NodePtr;
- typedef struct Node{
- int degree;
- double weight;
- double probabilityDistribution;
- }Node;
-
- Node* decisionMaking;
- int** adjacentMatrix;
- int* initalNetwork;
-
- void initial();
- void initalNetwork_M0_connected();
- void updateDecisionMakingData();
- void generateFreeScaleNetwork();
- void showAdjacentMatrix();
- void writeDataToFile();
-
- int main(int argc, char** argv)
- {
- if( 4 != argc )
- {
- printf("this algorithm requires 4 user-specify parameters\n");
- printf("\t1.the size of network\n");
- printf("\t2.the initial size of network\n");
- printf("\t1.the size of \n");
- printf("\texample: \"a.exe 100 3 3\"\n");
- exit(0);
- }
- NETWORK_SIZE = atoi(argv[1]);
- M_0 = atoi(argv[2]);
- M = atoi(argv[3]);
- srand((unsigned)time(NULL));
- initial();
- initalNetwork_M0_connected();
- generateFreeScaleNetwork();
- writeDataToFile();
- showAdjacentMatrix();
-
- write2file(adjacentMatrix, NETWORK_SIZE, "freeScale_edges.data");
- return 0;
- }
-
- void initial()
- {
- if( !(decisionMaking = (NodePtr)malloc(sizeof(Node) * (NETWORK_SIZE + 1))) )
- {
- printf("decisionMaking* malloc error\n");
- exit(0);
- }
- if( !(adjacentMatrix = (int**)malloc(sizeof(int*) * (NETWORK_SIZE + 1))) )
- {
- printf("adjacentMatrix** malloc error\n");
- exit(0);
- }
- int i;
- for( i = 1; i <= NETWORK_SIZE; i++ )
- {
- if( !(adjacentMatrix[i] = (int*)malloc(sizeof(int) * (NETWORK_SIZE + 1))) )
- {
- printf("adjacentMatrix[%d]* malloc error\n", i);
- exit(0);
- }
- }
- if( !(initalNetwork = (int*)malloc(sizeof(int) * (M_0 + 1))) )
- {
- printf("initalNetwork* malloc error\n");
- exit(0);
- }
- }
-
- /*
- * 初始化:在NETWORK_SIZE中随机选择M_0个节点构成连通的网络。
- * */
- void initalNetwork_M0_connected(){
- int i, j, randomFirst, randomSecond;
- <span style="white-space:pre"> </span>for( i = 1; i <= NETWORK_SIZE; i++ )
- for( j = 1; j <= NETWORK_SIZE; j++ )
- adjacentMatrix[i][j] = 0;
- // 随机产生M_0个节点
- for( i = 1; i <= M_0; i++ )
- {
- initalNetwork[i] = rand() % NETWORK_SIZE + 1;
- for( j = 1; j < i; j++ )
- if( initalNetwork[i] == initalNetwork[j] )
- {
- i--;
- break;
- }
- }
- for( i = 1; i < M_0; i++ )
- adjacentMatrix[initalNetwork[i]][initalNetwork[i+1]] = adjacentMatrix[initalNetwork[i+1]][initalNetwork[i]] = 1;
- adjacentMatrix[initalNetwork[M_0]][initalNetwork[1]] = adjacentMatrix[initalNetwork[1]][initalNetwork[M_0]] = 1;
-
- //showAdjacentMatrix();
- updateDecisionMakingData();
- }
-
- /*
- * 通过adjacentMatrix更新decisionMaking数组
- * */
- void updateDecisionMakingData(){
- int i, j, totalDegree = 0;
-
- for( i = 1; i <= NETWORK_SIZE; i++ )
- decisionMaking[i].degree = 0;
- for( i = 1; i <= NETWORK_SIZE; i++ )
- for( j = 1; j <= NETWORK_SIZE; j++ )
- decisionMaking[i].degree += adjacentMatrix[i][j];
- for( i = 1; i <= NETWORK_SIZE; i++ )
- totalDegree += decisionMaking[i].degree;
- //printf("\n%d\n", totalDegree);
- for( i = 1; i <= NETWORK_SIZE; i++ )
- decisionMaking[i].weight = decisionMaking[i].degree/(double)totalDegree;
- decisionMaking[1].probabilityDistribution = decisionMaking[1].weight;
- for( i = 2; i <= NETWORK_SIZE; i++ )
- decisionMaking[i].probabilityDistribution = decisionMaking[i - 1].probabilityDistribution + decisionMaking[i].weight;
- }
-
- /*
- * 构造BA无标度网络模型
- * */
- void generateFreeScaleNetwork(){
- int i, k, j = 1, length = 0;
- int random_auxiliary_old[NETWORK_SIZE + 1];
- int random_auxiliary[NETWORK_SIZE + 1 - M_0];
-
- /*
- * 要保证每次引入一个<新的>的节点,所以要随机选择不重复的节点加入,并且把初始网络中的M_0个节点先删除
- * */
- for( i = 1; i <= NETWORK_SIZE; i++ )
- random_auxiliary_old[i] = i;
-
- for( i = 1; i <= M_0; i++ )
- random_auxiliary_old[initalNetwork[i]] = 0;
- for( i = 1; i <= NETWORK_SIZE; i++ )
- if( random_auxiliary_old[i] != 0 )
- random_auxiliary[j++] = random_auxiliary_old[i];
-
- /*
- * 添加新的节点构造无标度网络
- * */
- int new_node_index, new_node_value;
- double random_decision = 0.0;
- int targetNode; //表示找到的已经在网络中的将要连接的节点
- length = NETWORK_SIZE - M_0;
- int flag;
- for( i = 1; i <= NETWORK_SIZE - M_0; i++ )
- {
- new_node_index = rand() % length + 1;
- new_node_value = random_auxiliary[new_node_index];
- random_auxiliary[new_node_index] = random_auxiliary[length--];
- for( j = 1; j <= M; j++ ) //根据概率连接到已存在网络中的M个节点,不可以重边,不可以自连。
- {
- flag = 0;
- random_decision = (rand()%1000)/(double)1000;
- for( k = 1; k <= NETWORK_SIZE; k++ )
- {
- // 从第一个节点到最后一个节点比较probabilityDistribution和random_desction的大小,
- // 由于probabilityDistribution是有序的,所以可以使用一些高级的算法来提高查找的效率.
- if( decisionMaking[k].probabilityDistribution >= random_decision && decisionMaking[k].degree != 0 && adjacentMatrix[new_node_value][k] != 1 )
- {
- /*
- *
- * 如何按照可能性大小来选择要连哪一个点:
- * 选择的已经在网络中的点是:随机产生的0-1之间的概率p,找这样的点:
- * 它的累加概率(probabilityDistribution)是大于p的最小的值所对应的点。
- *
- */
- targetNode = k;
- flag = 1;
- break;
- }
- }
- if( flag == 0 )
- /*
- * 之前少考虑了这种情况,因为总要选择一个网络中的点接入。但是当产生了比较大的随机概率p,可能
- * 在他后面(按probabilityDistribution来说)没有可选的点(要么选择过了,要么不在网络中),则重新开始
- */
- {
- for( k = 1; k <= NETWORK_SIZE; k++ )
- {
- if( decisionMaking[k].degree != 0 && adjacentMatrix[new_node_value][k] != 1 )
- {
- targetNode = k;
- break;
- }
- }
- }
- //printf(" target node is %d\n", targetNode);
- adjacentMatrix[new_node_value][targetNode] = adjacentMatrix[targetNode][new_node_value] = 1;
- }
- updateDecisionMakingData(); //else新选的加入节点和已有网络中的M个边都链接后再更新
- }
- }
-
- void showAdjacentMatrix(){
- int i, j;
- int numberOfEage = 0;
- printf("\tshow adjacentMatrix\n");
- for( i = 1; i <= NETWORK_SIZE; i++ )
- {
- for( j = 1; j <= NETWORK_SIZE; j++ )
- {
- printf("%d", adjacentMatrix[i][j]);
- if( adjacentMatrix[i][j] == 1 )
- numberOfEage++;
- }
- printf("\n");
- }
- printf("the number of eage is %d\n", numberOfEage/2);
- }
-
- void writeDataToFile(){
- FILE* fout;
- if( NULL == (fout = fopen("freeScaleNetwork.data", "w")))
- {
- printf("open file(freeScaleNetwork) error!\n");
- exit(0);
- }
- int i;
- int j;
- for( i = 1; i <= NETWORK_SIZE; i++ )
- {
- for( j = 1; j <= NETWORK_SIZE; j++ )
- fprintf(fout, "%d ", adjacentMatrix[i][j]);
- fprintf(fout, "\n");
- }
- }
以下分别是该算法产生的BA网络的可视化图以及度分布。


for_plot.c文件
- <span style="font-family:Courier New;">/*
- * 将给定的网络@adjacentMatrix(节点的个数为@size)中的所有的连边以有序对的
- * 形式输出到文件@out_filename中,每一对使用','隔开,方便python处理。
- * 该函数被所有产生网络结构的函数(generateRandomNetwork.c,
- * generateSmallNetwork.c和generateFreeScale.c)调用
- * */
- void write2file(int** adjacentMatrix, int size, char* out_filename)
- {
- int i, j;
- FILE* fout;
- if( NULL == (fout = fopen(out_filename,"w")) )
- {
- printf("%s cann't open!\n", out_filename);
- exit(0);
- }
- for( i = 1; i <= size; i++ )
- {
- for( j = i + 1; j <= size; j++ )
- {
- if( adjacentMatrix[i][j] )
- {
- fprintf(fout, "%d %d\n", i, j);
- }
- }
- }
- fclose(fout);
- }
- </span>
计算网络中节点的度分布的代码(网络大小即宏NETWORK_SIZE要按照实际网络的大小修改)
- <span style="font-family:Courier New;">#include<stdio.h>
- #include<stdlib.h>
- #include<string.h>
-
- #define NETWORK_SIZE 20000
-
- char targetfilename[200];
- char distribution[200];
- int adjacentMatrix[NETWORK_SIZE + 1][NETWORK_SIZE + 1];
- int degree[NETWORK_SIZE + 1]; //统计每一个节点的度
- double statistic[NETWORK_SIZE]; //用来统计,statistic[2] = 4,表示度为2的点有4个,有度为0的,
- //不可能有度为NETWORK_SIZE的点
-
- void readDataFromFile();
- void calculateDegreeDistribution();
- void writeDataToFile();
-
- int main(int argc, char* argv[]){
- if( argc != 2 )
- {
- printf("need a parameter to indicate the network data name\n");
- printf("for example: smallworldnetwork.data\n");
- exit(0);
- }
- strcat(targetfilename, argv[1]);
- printf("%s\n", targetfilename);
-
- readDataFromFile();
- calculateDegreeDistribution();
- writeDataToFile();
- return 0;
- }
-
- /*
- * 读入网络的结构
- * */
- void readDataFromFile(){
- FILE* fread;
- if( NULL == (fread = fopen(targetfilename, "r")))
- {
- printf("open file(%s) error!\n");
- exit(0);
- }
- int i;
- int j;
- for( i = 1; i <= NETWORK_SIZE; i++ ){
- for( j = 1; j <= NETWORK_SIZE; j++ )
- {
- if( 1 != fscanf(fread, "%d ", &adjacentMatrix[i][j]))
- {
- printf("fscanf error: file: %s\t(%d, %d)\n", targetfilename, i, j);
- exit(0);
- }
- }
- }
- fclose(fread);
- }
-
- void calculateDegreeDistribution(){
- int i;
- int j;
- double averageDegree = 0.0;
- for( i = 1; i <= NETWORK_SIZE; i++ )
- for( j = 1; j <= NETWORK_SIZE; j++ )
- degree[i] = degree[i] + adjacentMatrix[i][j];
- for( i = 1; i <= NETWORK_SIZE; i++ )
- averageDegree += degree[i];
- printf("%f----<k> = %f\n", averageDegree,averageDegree/NETWORK_SIZE);
-
- for( i = 1; i <= NETWORK_SIZE; i++ )
- statistic[degree[i]]++;
-
- double indentify = 0.0;
- for( i = 0; i < NETWORK_SIZE; i++ )
- {
- statistic[i] = statistic[i]/(double)(NETWORK_SIZE);
- indentify += statistic[i];
- }
- printf("\nindentify: %f\n", indentify);
- }
-
- /*
- * 将网络的度分布写入文件 distributionOf@targetfilename
- * */
- void writeDataToFile(){
- FILE* fwrite;
- strcat(distribution, "distributionOf");
- strcat(distribution, targetfilename);
- printf("%s\n", distribution);
- if( NULL == (fwrite = fopen(distribution, "w")))
- {
- printf("open file(%s) error!\n", distribution);
- exit(0);
- }
- int i;
- for( i = 0; i < NETWORK_SIZE; i++ )
- {
- fprintf(fwrite, "%d %f\n",i, statistic[i]);
- }
- fclose(fwrite);
- }
- </span>
可视化网络(即绘制如上的网络图的代码)的代码(需要安装igraph)
- # -*- coding:UTF8 -*-
-
- from igraph import *
-
- edges = []
-
- # 从文件@filename中读入网络的边
- def read_edges(filename):
- fin = open(filename, "r")
- for line in fin:
- line = line.strip()
- line = line.split(" ")
- edges.append((int(line[0]) - 1, int(line[1]) - 1))
-
- def plot_network(size):
- g = Graph()
- g.add_vertices(size)
- g.add_edges(edges)
- layout = g.layout('kk')
- visual_style = {}
- visual_style['layout'] = layout
- visual_style['bbox'] = (500,500)
- visual_style['vertex_label'] = [(label + 1) for label in range(size)]
- visual_style['vertex_color'] = 'white'
- visual_style['vertex_size'] = g.degree() # 节点的大小与度成正比
- # visual_style['vertex_size'] = 20 # 所有节点的大小都是相同的:20
- plot(g, **visual_style)
-
- def main(size):
- read_edges("random_edge.data") #包含网络的连边的信息的文件的名称
- plot_network(size)
-
- main(10) # 这里的10需要更改为网络中的节点的个数
|