前言 转向系统对整车系统来说非常重要,很大程度上影响行车安全以及驾驶操控性。转向系统自汽车诞生起就开始了一步步的演化,发展到今天,有了各种普遍使用的形式。未来随着无人驾驶技术的发展,转向系统将扮演更加重要的角色。 概念 用来改变或保持汽车行驶或倒退方向的一系列装置称为汽车转向系统(Steering System)。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。毋庸置疑,汽车转向系统对汽车的行驶安全至关重要。 类型 汽车转向系统按照动力可以分为两大类:机械转向系统和动力转向系统。 完全靠驾驶员手臂力量操纵的转向系统称为机械转向系统。借助动力来操纵的转向系统称之为动力转向系统。 动力转向系统又可分为液压动力转向系统和电动助力动力转向系统。 机械转向系统 机械转向系以驾驶员的体力作为转向动力来源,其中所有力学传递结构都是机械的。机械转向系由转向操纵机构、转向器和转向传动机构三大部分组成。
(1) 转向操纵机构 转向操纵机构由方向盘、转向轴、转向管柱等组成,它的作用是将驾驶员转动转向盘的力传给转向器。 (2) 转向器 转向器(通常也叫转向机)是完成由旋转运动到直线运动的一组齿轮机构,同时也是转向系中的减速传动装置。从目前使用的普遍程度来看,主要的转向器类型有4种:齿轮齿条式(RP型)、循环球式(BS型)、蜗杆曲柄指销式(WP型)、蜗杆滚轮式(WR型)等。 1)齿轮齿条式转向器(RP型) 齿轮齿条式转向器是一种最简单的转向器。它的优点是结构简单、紧凑,刚度大,成本低廉,转向灵敏,正、逆袭率都高,便于布置,而且特别适合于与烛式悬架和麦弗逊悬架配用,还可以直接带动横拉杆,简化转向传动机构。因此在轿车和微、轻型货车上得到广泛应用。 齿轮齿条式转向器是利用齿轮的旋转带动齿条左右移动。 2)循环球式转向器(BS型) 循环球式转向器是目前国内外应用最广泛的结构型式之一,循环球式转向器正、逆袭率都很高,故操纵轻便,寿命长,工作稳定可靠;但是由于逆袭率很高,导致容易将路面冲击力传到方向盘上。 循环球式转向器一般有两级传动副,第一级是螺杆螺母传动副,第二级是齿条齿扇传动副。为了减少转向螺杆转向螺母之间的摩擦,二者的螺纹并不直接接触,其间装有多个钢球,以实现滚动摩擦。转向螺杆和螺母上都加工出断面轮廓为两段或三段不同心圆弧组成的近似半圆的螺旋槽。二者的螺旋槽能配合形成近似圆形断面的螺旋管状通道。螺母侧面有两对通孔,可将钢球从此孔塞入螺旋形通道内。转向螺母外有两根钢球导管,每根导管的两端分别插入螺母侧面的一对通孔中。导管内也装满了钢球。这样,两根导管和螺母内的螺旋管状通道组合成两条各自独立的封闭的钢球'流道'。 转向螺杆转动时,通过钢球将力传给转向螺母,螺母即沿轴向移动。同时,在螺杆及螺母与钢球间的摩擦力偶作用下,所有钢球便在螺旋管状通道内滚动,形成'球流'。在转向器工作时,两列钢球只是在各自的封闭流道内循环,不会脱出。 3)蜗杆曲柄指销式(WP型) 蜗杆曲柄指销式转向器的传动副(以转向蜗杆为主动件),具有梯形截面螺纹的转向蜗杆支承在转向器壳体两端的球轴承上,蜗杆与锥形指销相啮合,指销用双列圆锥滚子轴承支于摇臂轴内端的曲柄孔中。当转向蜗杆随转向盘转动时,指销沿蜗杆螺旋槽上下移动,并带动曲柄及摇臂轴转动。 据了解,在世界范围内,汽车循环球式转向器占45%左右,齿条齿轮式转向器占40%左右,蜗杆滚轮式转向器占10%左右,其它型式的转向器占5%。循环球式转向器一直在稳步发展。在西欧小客车中,齿条齿轮式转向器有很大的发展。日本汽车转向器的特点是循环球式转向器占的比重越来越大,日本装备不同类型发动机的各类型汽车,采用不同类型转向器,在公共汽车中使用的循环球式转向器,已由60年代的62.5%,发展到现今的100%了(蜗杆滚轮式转向器在公共汽车上已经被淘汰)。大、小型货车大都采用循环球式转向器,但齿条齿轮式转向器也有所发展。微型货车用循环球式转向器占65%,齿条齿轮式占35%。 (3)转向传动机构 转向传动机构的功用是将转向器输出的力和运动传到转向桥两侧的转向节,使两侧转向轮偏转,且使二转向轮偏转角按一定关系变化,以保证汽车转向时车轮与地面的相对滑动尽可能小。 汽车转向时,要使各车轮都只滚动不滑动,各车轮必须围绕一个中心点O转动,如下图所示。显然这个中心要落在后轴中心线的延长线上,并且左、右前轮也必须以这个中心点O为圆心而转动。 为了满足上述要求,左、右前轮的偏转角应满足如下关系: 转向传动机构的组成和布置因转向器位置和转向轮悬架类型而异,结构包括转向摇臂、直拉杆、转向梯形等。 转向摇臂 转向摇臂是转向器传动副与直拉杆间的传动件。 转向直拉杆 转向直拉杆是转向摇臂与转向节臂之间的传动杆件。 转向横拉杆 转向横拉杆是转向梯形机构的底边。 (4)转向减振器 随着车速的提高,现代汽车的转向轮有时会产生摆振(转向轮绕主销轴线往复摆动,以至引起整车车身的振动),这不仅影响汽车的稳定性,而且还影响汽车的舒适性、加剧前轮轮胎的磨损。在转向传动机构中设置转向减振器是克服转向轮摆振的有效措施。转向减振器的一端与车身(或前桥)铰接,另一端与转向直拉杆(或转向器)铰接。 1.连接环衬套 2.连接环橡胶套 3.油缸4.压缩阀总成 5.活塞及活塞杆总成 6.导向座 7.油封 8.挡圈 9.轴套及连接环总成 10.橡胶储液缸 动力转向系统 动力转向系统就是在机械转向系统的基础上加设一套转向加力装置而形成的。外来的加力装置可以有效减轻驾驶员操纵转向盘的作用力。 (1) 液压式动力转向系统 机械式液压助力系统主要包括齿轮齿条转向结构和液压系统(液压助力泵、液压缸、活塞等)两部分。工作原理是通过液压泵(由发动机皮带带动)提供油压推动活塞,进而产生辅助力推动转向拉杆,辅助车轮转向。 位于转向机上的机械阀体(可随转向柱转动),在方向盘没有转动时,阀体保持原位,活塞两侧的油压相同,处于平衡状态。当方向盘转动时,转向控制阀就会相应的打开或关闭,一侧油液不经过液压缸而直接回流至储油罐,另一侧油液继续注入液压缸内,这样活塞两侧就会产生压差而被推动,进而产生辅助力推动转向拉杆,使转向更加轻松。 在液压转向系统中,如车轮的剧烈跳动和遇到坑洼路面导致轮胎出现非自主的转向时,可以通过液压对活塞的作用能够很好的缓冲和吸收震动,使传递到方向盘上的震动大大减少。机械液压助力技术成熟稳定,可靠性高,应用广泛。但结构较复杂,维护成本较高。而且单纯的机械式液压助力系统助力力度不可调节,很难兼顾低速和高速行驶时对指向精度的不同需求。 电子式液压助力的结构原理与机械式液压助力大体相同,最大的区别在于提供油压油泵的驱动方式不同。机械式液压助力的液压泵直接是通过发动机皮带驱动的,而电子式液压助力采用的是由电力驱动的电子泵。
电子液压助力的电子泵,不用消耗发动机本身的动力,而且电子泵是由电子系统控制的,不需要转向时,电子泵关闭,进一步减少能耗。电子液压助力转向系统的电子控制单元,利用对车速传感器、转向角度传感器等传感器的信息处理,可以通过改变电子泵的流量来改变转向助力的力度大小。 (2) 电动助力动力转向系统 EPS(Electronic Power Steering system) 在机械转向机构的基础上,增加信号传感器、电子控制单元和转向助力机构。 电动式EPS主要工作原理是,在方向盘转动时,位于转向柱位置的转矩传感器将转动信号传到控制器,控制器通过运算修正给电机提供适当的电压,驱动电机转动。而电动机输出的扭矩经减速机构放大后推动转向柱或转向拉杆,从而提供转向助力。电动助力转向系统可以根据速度改变助力的大小,能够让方向盘在低速时更轻盈,而在高速时更稳定。
电动助力转向有两种实现方式,一种是对转向柱施加助力,是将助力电机经减速增扭后直接连接在转向柱上,电机输出的辅助扭矩直接施加在转向柱上,相当于电机直接帮助我们转动方向盘。另一种是对转向拉杆施加助力,是将助力电机安装在转向拉杆上,直接用助力电机推动拉杆使车轮转向。后者结构更为紧凑、便于布置,目前使用比较广泛。 除了上述几种常见形式,一些公司还在此基础上发展出了随速可变助力转向。随速可变助力转向是指转向助力的大小可随着车速的变化而改变。这样有什么好处呢?在平时停车入库等低速行驶时,如方向盘转向轻盈确实很方便,但是如果在高速行驶时,方向盘转向过于轻盈反而是一种危害,因为不利于车辆高速行驶的稳定性。 而随速可变助力转向可以做到这点,当车低速行驶时,它可以提供大的助力,保证方向盘转动轻盈和灵活;当车速较高时,它提供的助力就会较小,以增强行车的安全性和稳定性。 以上有智享君整理编辑,供大家一起学习,如有误,请留言告知。 ^-^ 知识值得分享 ^-^ 完 资料来源 | 易车网 百度百科 |
|
来自: 爱因思念l5j0t8 > 《资料》