分享

随笔:针对Servo.h库的两个疑问进行了简单的验证

 绿颜陌上蕉下客 2017-10-02
引用: ┏ωǒ┛菰独 发表于 2012-9-9 19:27
根据楼主的描述  我猜测舵机库是用了timer的定时中断软件翻转IO实现的PWM(准确来说是PMM), 而pwm输出则使用 ...

吧库文件放到这里供研究哈
[pre lang='arduino' line='1' file='Servo.h']#ifndef Servo_h
#define Servo_h

#include

/*
* Defines for 16 bit timers used with  Servo library
*
* If _useTimerX is defined then TimerX is a 16 bit timer on the curent board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.
*
*/

// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define _useTimer5
#define _useTimer1
#define _useTimer3
#define _useTimer4
typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ;

#elif defined(__AVR_ATmega32U4__)  
#define _useTimer3
#define _useTimer1
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;

#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define _useTimer3
#define _useTimer1
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;

#elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
#define _useTimer3
#define _useTimer1
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;

#else  // everything else
#define _useTimer1
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;                  
#endif

#define Servo_VERSION           2      // software version of this library

#define MIN_PULSE_WIDTH       544     // the shortest pulse sent to a servo  
#define MAX_PULSE_WIDTH      2400     // the longest pulse sent to a servo
#define DEFAULT_PULSE_WIDTH  1500     // default pulse width when servo is attached
#define REFRESH_INTERVAL    20000     // minumim time to refresh servos in microseconds

#define SERVOS_PER_TIMER       12     // the maximum number of servos controlled by one timer
#define MAX_SERVOS   (_Nbr_16timers  * SERVOS_PER_TIMER)

#define INVALID_SERVO         255     // flag indicating an invalid servo index

typedef struct  {
  uint8_t nbr        :6 ;             // a pin number from 0 to 63
  uint8_t isActive   :1 ;             // true if this channel is enabled, pin not pulsed if false
} ServoPin_t   ;  

typedef struct {
  ServoPin_t Pin;
  unsigned int ticks;
} servo_t;

class Servo
{
public:
  Servo();
  uint8_t attach(int pin);           // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
  uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
  void detach();
  void write(int value);             // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds
  void writeMicroseconds(int value); // Write pulse width in microseconds
  int read();                        // returns current pulse width as an angle between 0 and 180 degrees
  int readMicroseconds();            // returns current pulse width in microseconds for this servo (was read_us() in first release)
  bool attached();                   // return true if this servo is attached, otherwise false
private:
   uint8_t servoIndex;               // index into the channel data for this servo
   int8_t min;                       // minimum is this value times 4 added to MIN_PULSE_WIDTH   
   int8_t max;                       // maximum is this value times 4 added to MAX_PULSE_WIDTH   
};

#endif[/code]


[pre lang='arduino' line='1' file='Servo.cpp']#include
#include

#include 'Servo.h'

#define usToTicks(_us)    (( clockCyclesPerMicrosecond()* _us) / 8)     // converts microseconds to tick (assumes prescale of 8)  // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds


#define TRIM_DURATION       2                               // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009

//#define NBR_TIMERS        (MAX_SERVOS / SERVOS_PER_TIMER)

static servo_t servos[MAX_SERVOS];                          // static array of servo structures
static volatile int8_t Channel[_Nbr_16timers ];             // counter for the servo being pulsed for each timer (or -1 if refresh interval)

uint8_t ServoCount = 0;                                     // the total number of attached servos


// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER)       // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel)  ((_timer*SERVOS_PER_TIMER) + _channel)     // macro to access servo index by timer and channel
#define SERVO(_timer,_channel)  (servos[SERVO_INDEX(_timer,_channel)])            // macro to access servo class by timer and channel

#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4)  // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4)  // maximum value in uS for this servo

/************ static functions common to all instances ***********************/

static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{
  if( Channel[timer] < 0 )
    *TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
  else{
    if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )  
      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated   
  }

  Channel[timer]++;    // increment to the next channel
  if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
    *OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
    if(SERVO(timer,Channel[timer]).Pin.isActive == true)     // check if activated
      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high   
  }  
  else {
    // finished all channels so wait for the refresh period to expire before starting over
    if( (unsigned)*TCNTn <  (usToTicks(REFRESH_INTERVAL) + 4) )  // allow a few ticks to ensure the next OCR1A not missed
      *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);  
    else
      *OCRnA = *TCNTn + 4;  // at least REFRESH_INTERVAL has elapsed
    Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
  }
}

#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect)
{
  handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif

#if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect)
{
  handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif

#if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect)
{
  handle_interrupts(_timer4, &TCNT4, &OCR4A);
}
#endif

#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect)
{
  handle_interrupts(_timer5, &TCNT5, &OCR5A);
}
#endif

#elif defined WIRING
// Interrupt handlers for Wiring
#if defined(_useTimer1)
void Timer1Service()
{
  handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
void Timer3Service()
{
  handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#endif


static void initISR(timer16_Sequence_t timer)
{  
#if defined (_useTimer1)
  if(timer == _timer1) {
    TCCR1A = 0;             // normal counting mode
    TCCR1B = _BV(CS11);     // set prescaler of 8
    TCNT1 = 0;              // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
    TIFR |= _BV(OCF1A);      // clear any pending interrupts;
    TIMSK |=  _BV(OCIE1A) ;  // enable the output compare interrupt  
#else
    // here if not ATmega8 or ATmega128
    TIFR1 |= _BV(OCF1A);     // clear any pending interrupts;
    TIMSK1 |=  _BV(OCIE1A) ; // enable the output compare interrupt
#endif   
#if defined(WIRING)      
    timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif       
  }
#endif  

#if defined (_useTimer3)
  if(timer == _timer3) {
    TCCR3A = 0;             // normal counting mode
    TCCR3B = _BV(CS31);     // set prescaler of 8  
    TCNT3 = 0;              // clear the timer count
#if defined(__AVR_ATmega128__)
    TIFR |= _BV(OCF3A);     // clear any pending interrupts;   
        ETIMSK |= _BV(OCIE3A);  // enable the output compare interrupt     
#else  
    TIFR3 = _BV(OCF3A);     // clear any pending interrupts;
    TIMSK3 =  _BV(OCIE3A) ; // enable the output compare interrupt      
#endif
#if defined(WIRING)   
    timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service);  // for Wiring platform only       
#endif  
  }
#endif

#if defined (_useTimer4)
  if(timer == _timer4) {
    TCCR4A = 0;             // normal counting mode
    TCCR4B = _BV(CS41);     // set prescaler of 8  
    TCNT4 = 0;              // clear the timer count
    TIFR4 = _BV(OCF4A);     // clear any pending interrupts;
    TIMSK4 =  _BV(OCIE4A) ; // enable the output compare interrupt
  }   
#endif

#if defined (_useTimer5)
  if(timer == _timer5) {
    TCCR5A = 0;             // normal counting mode
    TCCR5B = _BV(CS51);     // set prescaler of 8  
    TCNT5 = 0;              // clear the timer count
    TIFR5 = _BV(OCF5A);     // clear any pending interrupts;
    TIMSK5 =  _BV(OCIE5A) ; // enable the output compare interrupt      
  }
#endif
}

static void finISR(timer16_Sequence_t timer)
{
    //disable use of the given timer
#if defined WIRING   // Wiring
  if(timer == _timer1) {
    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
    TIMSK1 &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt
    #else
    TIMSK &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt   
    #endif
    timerDetach(TIMER1OUTCOMPAREA_INT);
  }
  else if(timer == _timer3) {     
    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
    TIMSK3 &= ~_BV(OCIE3A);    // disable the timer3 output compare A interrupt
    #else
    ETIMSK &= ~_BV(OCIE3A);    // disable the timer3 output compare A interrupt
    #endif
    timerDetach(TIMER3OUTCOMPAREA_INT);
  }
#else
    //For arduino - in future: call here to a currently undefined function to reset the timer
#endif
}

static boolean isTimerActive(timer16_Sequence_t timer)
{
  // returns true if any servo is active on this timer
  for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
    if(SERVO(timer,channel).Pin.isActive == true)
      return true;
  }
  return false;
}


/****************** end of static functions ******************************/

Servo::Servo()
{
  if( ServoCount < MAX_SERVOS) {
    this->servoIndex = ServoCount++;                    // assign a servo index to this instance
        servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH);   // store default values  - 12 Aug 2009
  }
  else
    this->servoIndex = INVALID_SERVO ;  // too many servos
}

uint8_t Servo::attach(int pin)
{
  return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}

uint8_t Servo::attach(int pin, int min, int max)
{
  if(this->servoIndex < MAX_SERVOS ) {
    pinMode( pin, OUTPUT) ;                                   // set servo pin to output
    servos[this->servoIndex].Pin.nbr = pin;  
    // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
    this->min  = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
    this->max  = (MAX_PULSE_WIDTH - max)/4;
    // initialize the timer if it has not already been initialized
    timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
    if(isTimerActive(timer) == false)
      initISR(timer);   
    servos[this->servoIndex].Pin.isActive = true;  // this must be set after the check for isTimerActive
  }
  return this->servoIndex ;
}

void Servo::detach()  
{
  servos[this->servoIndex].Pin.isActive = false;  
  timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
  if(isTimerActive(timer) == false) {
    finISR(timer);
  }
}

void Servo::write(int value)
{  
  if(value < MIN_PULSE_WIDTH)
  {  // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
    if(value < 0) value = 0;
    if(value > 180) value = 180;
    value = map(value, 0, 180, SERVO_MIN(),  SERVO_MAX());      
  }
  this->writeMicroseconds(value);
}

void Servo::writeMicroseconds(int value)
{
  // calculate and store the values for the given channel
  byte channel = this->servoIndex;
  if( (channel >= 0) && (channel < MAX_SERVOS) )   // ensure channel is valid
  {  
    if( value < SERVO_MIN() )          // ensure pulse width is valid
      value = SERVO_MIN();
    else if( value > SERVO_MAX() )
      value = SERVO_MAX();   
   
          value = value - TRIM_DURATION;
    value = usToTicks(value);  // convert to ticks after compensating for interrupt overhead - 12 Aug 2009

    uint8_t oldSREG = SREG;
    cli();
    servos[channel].ticks = value;  
    SREG = oldSREG;   
  }
}

int Servo::read() // return the value as degrees
{
  return  map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);     
}

int Servo::readMicroseconds()
{
  unsigned int pulsewidth;
  if( this->servoIndex != INVALID_SERVO )
    pulsewidth = ticksToUs(servos[this->servoIndex].ticks)  + TRIM_DURATION ;   // 12 aug 2009
  else
    pulsewidth  = 0;

  return pulsewidth;   
}

bool Servo::attached()
{
  return servos[this->servoIndex].Pin.isActive ;
}
[/code]

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多