分享

增材制造技术:中国航空技术自主创新的加速器

 q1338 2017-12-04

图2:技术群

除了英美外,其他一些发达国家也积极采取措施,以推动增材制造技术的发展。德国建立了直接制造研究中心,主要研究和推动增材制造技术在航空航天领域中结构轻量化方面的应用;法国增材制造协会致力于增材制造技术标准的研究;在政府资助下,西班牙启动了一项发展增材制造的专项,研究内容包括增材制造共性技术、材料、技术交流及商业模式等四方面内容;澳大利亚政府于2012年2月宣布支持一项航空航天领域革命性的项目“微型发动机增材制造技术”,该项目使用增材制造技术制造航空航天领域微型发动机零部件;日本政府也很重视增材制造技术的发展,通过优惠政策和大量资金鼓励产学研用紧密结合,有力促进该技术在航空航天等领域的应用。

发展增材制造技术

促进航空制造业发展

高速、高机动性、长续航能力、安全高效低成本运行等苛刻服役条件对飞行器结构设计、材料和制造提出了更高要求。轻量化、整体化、长寿命、高可靠性、结构功能一体化以及低成本运行成为结构设计、材料应用和制造技术共同面临的严峻挑战,这取决于结构设计、结构材料和现代制造技术的进步与创新。

首先,增材制造技术能够满足航空武器装备研制的低成本、短周期需求。随着技术的进步,为了减轻机体重量,提高机体寿命,降低制造成本,飞机结构中大型整体金属构件的使用越来越多。大型整体钛合金结构制造技术已经成为现代飞机制造工艺先进性的重要标志之一。美国F-22后机身加强框、F-14和“狂风”的中央翼盒均采用了整体钛合金结构。大型金属结构传统制造方法是锻造再机械加工,但能用于制造大型或超大型金属锻坯的装备较为稀缺,高昂的模具费用和较长的制造周期仍难满足新型号的快速低成本研制的需求;另外,一些大型结构还具有复杂的形状或特殊规格,用锻造方法难以制造。而增量制造技术对零件结构尺寸不敏感,可以制造超大、超厚、复杂型腔等特殊结构。除了大型结构,还有一些具有极其复杂外形的中小型零件,如带有空间曲面及密集复杂孔道结构等,用其他方法很难制造,而用高能束流选区制造技术可以实现零件的净成形,仅需抛光即可装机使用。传统制造行业中,单件、小批量的超规格产品往往成为制约整机生产的瓶颈,通过增量制造技术能够实现以相对较低的成本提供这类产品。

据统计,目前我国大型航空钛合金零件的材料利用率非常低,平均不超过10 %;同时,模锻、铸造还需要大量的工装模具,由此带来研制成本的上升。通过高能束流增量制造技术,可以节省材料三分之二以上,数控加工时间减少一半以上,同时无须模具,从而能够将研制成本尤其是首件、小批量的研制成本大大降低,节省国家宝贵的科研经费。

通过大量使用基于金属粉末和丝材的高能束流增材制造技术生产飞机零件,从而实现结构的整体化,降低成本和周期,达到“快速反应,无模敏捷制造”的目的。随着我国综合国力的提升和科学技术的进步,为了缩小与发达国家的差距,保证研制速度、加快装备更新速度,急需要这种新型无模敏捷制造技术——金属结构快速成形直接制造技术。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多