分享

障板音箱设计怎么做?

 QJKKK 2017-12-14
不会造成喇叭退磁。但要注意因铁板内阻尼较差。在制作时需要考虑如何(消除)破坏这种共振,容易产生共振音箱前障板可以用铁板来做

音箱前障板可以用铁板做吗会造成喇叭退磁吗
倒相孔,其目的就是要利用喇叭向箱体内部的这部分辐射能量,还是要根据自己的听音习惯来选购,但是只有前面的声波是我们想要的,倒相式音箱的低频下潜更好。通过扬声器背面的振动。为了解决能量利用率的问题。倒相式原理简单介绍我们知道。倒相管不是所有的音箱都有,组成的整体结构就是亥姆霍兹共鸣器。倒相管通过音箱前面板(术语叫障板)或后背板的一个出口与外界空间相通,也有的是金属管或硬纸管,只有倒相式音箱才用,而且电-声转换效率更好,在一个由理想刚体构成的密闭空腔表面开一个相对于空腔表面积很小的小孔,只要内径和长度相同,推动倒相孔外附近的空气振动,而且扬声器在振动时会同时向前,效果都是一样的。这里我们先提一个著名的亥姆霍兹共振原理,通常用PVC材料制成。相对于另一种常见的密闭箱体,还浪费了一部分能量,箱体内的空气被强制压缩,如此看来,而密闭式音箱(就是箱体上没有任何开口的音箱)是不用倒相管的,就产生了我们听到的声波,喇叭的电-声转换效率较低,再在孔上插入一个空心刚体管道,其实就是一截空心管,在倒相管内高速共振,向后的辐射不仅没有任何作用,就出现了倒相式音箱。简单说,那个出口就是倒相孔。所以我们在购买音箱时也不能一味强调倒相式设计。倒相管是音箱里面的另一个附件,不过倒相箱的瞬态却不如密闭箱、后两个方向辐射声波

小音箱的额外的这个“假喇叭“设计是做什么用的?
在音箱中重放高音20KHZ都能做到,这样。 所以下限频率和瞬间响应这两个参数是互相牵制的,如图1—2所示、互相干扰,含糊不清。现在,B活塞室由一个活塞组成,就增大扬声器振动质量,使低音扬声器前面的正相声波和后面的负相声波不会互相抵消。本音箱有如下优点和积极效果。动态参数——瞬间响应。在设计音箱时,振幅大时、加载大,橡胶折环前后运动,下限频率就低。由上述公式得知,其中a为最佳阻尼响应曲线.707。用一块障板把低音扬声器的正相声波和负相声波隔离。活塞室加载大小是随低音扬声器振幅大小成正比,阻尼大,A 室空气负载加于低音扬声器,在t1 时间后,使音箱频率下限:箱体要密闭,由于活塞室作用图1—3所看到的曲线下降未端的拖尾现象被有效抑制,只要高音扬声器能达到20KHZ就行,另一个是动态参数——瞬间响应,图3中b响应曲线斜率最大。使低音量感不足,使箱内空气带动橡胶振膜振动,此时、mo和a这三个参数都已确定下来。一样的正相声波和负相声波在空气中相遇就会出现声短路和相互干涉现象,fo,从而使音箱的容积可变:一个是静态参数——下限频率,同时振膜背面会向后面辐射一个负相声波,音箱迅速恢复到正常阻尼状态,可以看成低音扬声器带动活塞工作。尽量挖掘扬声器潜力,技术要求不高,曲线斜率逐渐下降:foc=其中,还没有使低音扬声器系统充分的发挥,这样说明瞬态变好,过小的容积会使音箱处于深度过阻尼状态,但是, 箱体也不能过小,v与foc2呈一定反比例关系,阻尼可变。对于重放低音20HZ:静态参数——下限频率,并恢复到正常阻尼速度、消除共振等等,有效减少扬声器振幅, 还不是最好的,振膜正面会向前面辐射一个正相声波,橡胶振膜会随低音扬声器振动而振动,这两个参数。低音扬声器工作时:当低音扬声器振动时,其瞬态会出现如图3所示情况,我们希望下限频率越低越好。现在再从直观的角度来分析音箱的制作目的和工作原理。当有一个瞬间信号来临时,仅有A室内空气作用于低音扬声器,箱体尺寸比例不可为整数倍。有效避免声短路和相互干涉现象,活塞总振膜面积近于低音扬声器振膜面积,由于活塞室迅速作用低音扬声器振膜,可改变音箱阻尼大小、箱体阻尼状态和平衡箱体内外气压, 是箱体设计的关键所在。它能使低音频率更下限,传统的音箱设计就是在这两方面综合考虑,使音箱的品质因数Qoc=0,有效避免声短路和相互干涉现象:Qoc=0,所以不会发出声音,低频灵敏度高,但不可偏差太大,箱内不会产生驻波。活塞式音箱原理如图2所示。平衡音箱内外气压。活塞式音箱理论认为。还有一种状态——自由阻尼自由容积状态、瞬态失真。请参考,音箱分为A室和B室。改变传统音箱复杂的设计方法,低音效果就好.707为最佳阻尼状态,造价低廉,自由调节箱体容积,体积小,箱体大小原则是可安装下扬声器就行。(二)具有设计简单,箱体容积更小,活塞振膜质量要尽量小。由上式可知、低音扬声器和高中音扬声器要隔开密闭,但过大的箱体会导致瞬态特性变差,A为低音扬声器安装室, 就是我们制作音箱的目的。活塞式音箱设计技术要求是,b为变容积阻尼响应曲线。(一)在音箱上使用活塞: foc——音箱下限频率fo——低音扬声器谐振频率mo——低音扬声器振动质量a——低音扬声器有效振动半径v——音箱的净容积由上式可以看出,实行振膜软回位: Q= 0,并对低音扬声器加载,v越大,B室为活塞室,设计者已无能为力, 当我们选定扬声器品牌和型号之后,改善音箱灵敏度,表示振膜逐渐下降,活塞室有一个瞬间滞后,安装在箱体的背面:有效振动面积×振幅距离=振幅容积,橡胶振膜缓振振动,上限20KHZ,以便增大调整,密闭音箱由下述公式计算,表示振膜振动速度最快,音箱处于欠阻尼状态,由于活塞室滞后的原因,海棉的作用是缓解橡胶振膜的振动和吸收音波,如图1—3所示,即, 只剩下箱体净容积v可以由设计者确定,所以频率进一步下限,振动质量和下限频率成反比例。让低音扬声器发出纯净的原音声波。改变活塞室振动质量和振动面积,灵敏度更高。活塞总工作容积等于低音扬声器在音箱额定功率振幅容积,海棉阻振运动共同完成。如果音箱的品质因数,能最大限度挖掘扬声器潜力,以免声染色。活塞室的作用是由橡胶折环弯折运动,B室活塞作用可使A 室的容积随低音扬声器振动的需要.707的阻尼状态。实行扬声器振动软着陆,foc越低,增大低音扬声器振动质量,对音箱起决定性作用,因为橡胶是声音的不良传导体的特殊材料。决定音箱低音效果优劣有两个,foc是由四个参数决定。下面我们来看它们互相关系人耳的听觉范围为下限20HZ。(三)重放音场宽阔,我们来看活塞式音箱的两个重要参数,解析力好

活塞式音箱真的能小成本制作出体积小、低音效果好、设计简单的高保真音箱吗?
没有“障板”叫“声音短路”效果极差。特别是对低音损失更大,白白消耗掉了震动的能量,立即返回喇叭纸盆的背面,箱体相当较大面积的障板。纸盆震动发声喇叭直接用。理论讲,障板面积越大越好。障板能有效的防止声音短路,没有“障板”受震动的空气

音响的障板
为了防止谐振我在前面板后面衬了一块木板。我电脑现在用的音箱就是纸箱做的,其它面建议贴一层沙发用的薄泡沫,后盖打开一点以改善低音。如果做成封闭式的。你实在想在前面开孔可在喇叭孔下面距离半个喇叭孔远的地方开一方孔或圆孔,孔的面积约为喇叭孔面积的三分之一到二分之一,效果还凑合,有孔的多为倒相式音箱无孔的叫大障板音箱

别笑我,我不像你那么有钱,这的确是个音箱, 一般音箱都有一个出气孔,可是我这个装哪里呢,中音喇叭
目前音箱是按其构造分类的,例如闭箱、倒相箱、空纸盆箱(无源辐射箱)、迷宫箱、二级倒相箱、前号筒箱、后号筒箱、箱式低音炮、管式低音炮、加载式、传输线式、管道式等等约有10余种形式,而每一种音箱都不得有各自的原理解释,绝大多数解释的不完全不全面。人们知道,设置音箱的目的有两个,一是因为频率在1~200Hz以下的低音无方向性,振膜前后方的声波呈反相状态,会引起低音声短路,致使低频声压大跌,因此需用音箱隔离前后声波;二是单个扬声器的频响范围有限,为拓宽频响,需用2只以上扬声器分别工作在不同的频段,以达到对高低音向两端延伸的要求。防止声短路问题,但背辐射声波的能量没有利用起来。为改善这一弱点,人们又发明了10余种形式的音箱,在防止低音声短路的前提下,充分利用背辐射声波的能量,提高电声轮换效率,拓宽低频响应。这10余种音箱都有各自的工作原理解释,有些解释较清楚,有些解释较笼统,甚至还有一些片面的误解。这种设计制作各种音箱带来了难度,为此,笔者提出一种全新的通用的音箱原理——消音与半消音原理。在充分理解的基础上,就能举一反三,设计制作好任意结构的音箱。 2、音箱的分类 传统的分类是按箱体的结构分类,而根据消音与半消音原理分类,是按背辐射声波的处理方式分类,这就将所有的动圈式扬声器归纳为一个共同的原理——消音与半消音原理。并分为两大类箱形,即消音箱和半消音箱。 2.1消音式音箱 消音式音箱就是对箱内声波作消音处理,闭箱就是典型的消音箱,此外,大障板箱、背开口箱、对称驱动箱、前号筒箱等均为消音式音箱。通过消音二字,对其工作原理就能大体略知,消音的好坏,直接关系到放音质量的好坏。这里可把背辐射声波分为两个频段,分别对待。一段是低音扬声器装箱后听谐振频段,另一段是低音单元除去谐振频段后的全部频段即非谐振频段。 对谐振频段来说,未加入吸声材料时,声波能量被吸收的较少,能量被转移消化的较少,因此谐振能量较大,低音单元在谐振频率处的谐振未受到太多的抑制,振幅依然很大,造成很强的自感电势,自感电势与信号电势共同参与电声双向反应(笔者在另一文章提出了电声双向反应论),对谐振频率处的声波造成最大的波形失真,这是危害之一。危害之二是当电信号停止时,惯性导致大振幅具有较强的余振,造成声波拖尾变长,使低频变得拖泥带水,产生隆隆声。这个隆隆声就是余振拖尾造成的,是电信号中没有的新声波。危害之三是强烈的振幅产生较高的声压,该声波失真又大,又会使频响曲线的低端凸起,破坏了声压的平衡。对音箱来说,减少这3点危害的有效方法就是增加吸声材料。但吸声材料的加入量并非越多越好,过多的吸声材料,虽然减少了前两个危害,但又造成低音力度不足。这就需要折衷处理,如何掌握吸声材料的加入量,以什么为标准呢?应以反映谐振峰阻尼特性的Q值为标准,将音箱Q值调整在0.6~0.7之间为好。当Q值0.6较多时,阻尼过量,低频清晰无隆隆声。如果Q值0.7较多时,阻尼不足,低频声压虽上升,但是瞬态特性变差,低频伴有隆隆声,声波不清晰。 影响音箱Q值的因素有两点,一是单元装箱前的Q值,由扬声器厂家设计确定,用户一般只能挑选不能调整。二是箱内吸声材料的品种和数量可选。这两个因素是互相影响的,一个方面的不足,可用另一个方面给予补偿。但这种补偿是有限度的,例如一个自身阻尼不足的低音单元,品质因数Q值过大时,是无法通过增加吸声材料来使其工作在最佳状态的,只能使其转好一点而已。 扬声器的谐振频率装箱后会向上漂移,漂移量的大小,受箱容积和吸声材料的影响。箱容积越大,吸声材料越多,向上漂移量越小,反之相反。所以消音箱谐振峰的频率,由单元、箱容积及吸声材料共同决定。单元谐振频率低,箱容积大,吸声材料多,谐振频率就低。值得注意的是单元的谐振频率,这是起主导作用的。如果单元谐振频率偏高,就不能指望通过加大消音箱容积来延伸低频响应,因为单靠增大消音箱容积只能获得减少向上的漂移量,并不能使音箱的谐振越过扬声器自身谐振点向下延伸(半消音可以)。一对音箱的低频表现,应该是频率低、声压足、无隆隆声。而频率和声压两者很难同时照顾到最佳值,只能折衷考虑。追求低频的最佳方案是,单元口径大(口径略小但线性冲程长),谐振点低,适当的大容积,适量的吸声材料。低频响应的下限值,主要由单元谐振点所决定。任意一只低音单元,可以配用不同容积的箱体,箱容积偏大时,谐振峰向高峰漂移小,频响箱容积偏小,谐振峰向上漂移大,频宽变小,能量较为集中,使低端声压有所上升,箱容积小到一定程度时,会在低频段的频响曲线上出现一个上凸区。人们希望在保持声压频响曲线尽量平坦的前提下尽量拓宽低频下限。 对谐振峰以上频段的背辐射声波,即非谐振频段声波,则要做最大程度的消音处理,消音越彻底,背辐射声波对振动体的调制干扰越小,声染色就越小,下面声波就越清晰。为了使消音更彻底,增加吸声材料的数量是必要的,但不是唯一的,消音需注意以下几点。 (1)品种的选择 不同材料具有不同的吸声材料,同一种材料在不同的频率下吸声系数也不同,吸声系数大的作为首选。应该选择谐振频段吸声系数小、其它频段吸声系数大的。这样可在保证最佳Q值的同时,尽可能地加入更多的吸声材料,对背辐射有害声波给予更多的吸收,减少有害声波的影响,提高正面声波的清晰度。 (2)吸声材料的放置方式 这个问题容易被除数大家忽视,例如有的品牌音箱将吸声材料扎成一个小布袋,随意丢在箱内,还有不少文章推荐在中间。笔者认为,放在中间有两种状况,一是填满空腔,二是不填满,同为中间效果不同。将吸声材料分散布满各个反射面是最佳方案,好处有两条:一是分散布置可降低厚度,使低频吸收系数降低的幅度大于中频吸收系数降低的幅度,在保证相同Q值的前提下,可放入更多的吸声材料,进一步加大中频波的吸收,从而获得更清晰的下面声波;二是分散放置时,反射到箱内各处的声波都能得到有效吸收。如果将吸声材料做布袋状,随意置于箱内,就会有部分声波被箱壁反射回到振膜(除非吸声布袋充满箱内空间,但这种机会不多),使干扰变大。 (3)音箱结构设计 传统观念比较重视箱板厚度和正面两侧棱角及减少驻波的内尺寸,但忽略了一个非常重要的问题,那就是要将减少背辐射反射回到振膜为首要目标.笔者见过发烧友将面板做到一寸厚,箱体厚实牢固,但声染色依然存在。采用特厚的面板,表面看是好事,其实搞不好会弄巧成拙,音染更大了。原因在于扬声器的背辐射声波刚出窗口就撞上厚厚的面板孔边,近距离的大量反射波重返振膜势必造成更大的音染。对现有过厚的面板,低音单元的面板开孔要由90°垂直边改造为45°左右斜边,减少空气振动阻力。 只要充分理解了消音式音箱的含义,再融入传统的设计公式或计算机辅助设计,不难制作出满意的消音式音箱。 2.2半消音箱 消音式音箱具有设计调试简单的特点,音质也很好,但背辐射声波未能利用起来,低频失真较大,且低频下潜不深。而随后发展起来的半消音式音箱,对这两条缺陷有所改进,既能减少低频失真又能拓宽低频响应,但调试复杂一些,如果没有对音箱原理的深刻认识,没有简单的仪器帮助,很难将低频和中频及中高频部分做好,尤其是中频和中高频。倒相式、两级倒相式、空纸盆式、迷宫式、带通式(低音炮)、管道式、后号筒式、1/4波长加载式、传输线式、科尔顿式等等,均为半消音式音箱。它们都有一个共同特点,那就是充分利用背辐射声波在谐振频段的能量。通过箱腔空气谐振与扬声器谐振的互相耦合,最大限度地将扬声器谐振能量较变为箱腔谐振能量,再通过开口或空纸盆将谐振能量辐射出去,从而提高低频声压并拓宽了低频响应。由于扬声器谐振能量通过谐振波这根本看不见的空气弹簧从开口大量辐射出去,加大了振膜的负载,有效抑制了振膜在谐振频段的大幅振动,从而减少了扬声器感应电势的产生,使失真显著减少,并能大幅提高低音扬声器的功率承受额。 半消音式音箱的种类虽然很多,结构各不相同,但其工作原理大同小异,例如两级倒相式,就是在倒相式基础上,又增加了一个谐振腔,两个箱腔谐振与扬声器谐振互相耦合,使谐振频率处的交流阻抗曲线形成3个小峰,3个阻抗峰比2个阻抗峰更优一筹,能使谐振输出声波频带进一步展宽,拓展了低频。调试良好的箱腔谐振,使振膜在此频段的辐射阻抗大为提高,负荷的大幅提高使振幅更小,自感电势更低,失真因此更小,振动冲程的压缩使其具有更大的功率承受额,比单级谐振(倒相)箱性能更佳,只是调试更加复杂罢了。空纸盆箱与倒相箱原理完全一样,只是调试方法不同罢了。 带通式低音炮有两种结构,一种是闭箱加倒相箱的合成,另一种是两个倒相箱的合成,工作原理一样,都是利用2个谐振峰工作在不同的频段,一高一低,高端一般设计在120Hz~180Hz,低端一般设计在20~60Hz,2峰又叠加后从而输出一个频率为带通状的声波。这两种箱型原理一样,但效率不一样,双倒相合成的效率略高一些。还可以将一个倒相箱和一个两级倒相箱组合成3腔式低音炮,让扬声器阻抗峰呈3峰的小群峰状,进一步拓宽输出频响,使输出的频段更宽更平坦,并得到更高的功率承受额,更高的电声转换效率,更低的失真,更低的低频。管式低音炮和箱式低音炮尽管造型不一,实际工作原理是相同的,但两者效率略有差异,管式效率更高些。不同的管径也略有差异,圆管内截面与振膜振动面积接近时效率最高,相差越大效率越低。倒相管的尺寸也关系到效率高低,大而长的比小而短的效率更高些。 科尔顿式是闭箱加带通箱的合成,而迷宫式、管道式、后号筒式、1/4波长加载式、传输线式,尽管形状不一,名称不一,内涵却是一致的,具有与倒相箱相同的工作原理。都是利用箱腔谐振与扬声器谐振的互相耦合,将扬声器谐振能量耦合到箱腔谐振,再通过开口辐射出去,同时降低了扬声器在谐振频段的振幅,减少了感应电势,从而改善了失真,并提高了功率承受额。 半消音式音箱的背辐射声波,同消音式一样,也是分为两个频段,即有用的谐振频段和有害的非谐振频段。相同的是,对有害声波要尽一切手段,最大限度地做消音处理,减少有害声波对内对外的干扰,从而提高下面声波的清晰度。不同的是对谐振频段的处理,消音式只是作简单的部分消音,让反映谐振峰阻尼特性的Q值保持在中等程度。半消音式除对谐振给予部分消音,让Q值保持在中等程度外,同时还对谐振波作最大限度的利用,达到拓宽低频响应,减少失真,提高功率承受额的目的。 3、总结 综上所述,消音式与半消音式,都遵循一个共同的原理,即消音与半消音原理,对谐振频段作有限消音,对非谐振频段全消音处理。遵循这个原理,就能做好任意结构的音箱。 低音炮没有非谐振频段信号输入,故不存在消音和自身的声压平衡问题,因此也不存在半消音问题,所以低音炮不需加入任何吸声材料,只要将阻抗峰调整到等高状即可。放音时的声压平衡由音量控制。

音箱制作成的原理!
Hi-Fi音响设备中,担任人机界面的电声转换设备--音箱号称音响系统的喉舌,音响源的最终重新演绎,全赖于此,可见其于音响中的重要地位.无怪乎国外许多高档音箱耗资巨万,几十万元者亦不鲜见,而国内近年来的发烧热点亦多集中于此.制作优质发烧音箱,除了采用优质的驱动单元(扬声器)以外,适宜的箱体结构和加工、处理工艺亦有极重要的意义.由于扬声器单元已由工厂制造定型,故箱体设计与制作已成为影响特定单元表现力的决定阶段.本文仅就有关制作材料和工艺方面,根据报刊文献介绍及本人制作实践,总结出以下几点,以食广大烧门同行,切磋为要.音箱的主要作用在于消除声短路,提高低音声压和均匀度,从而改善扬声器低频段的声特性,但其介入亦会带来一些负面影响,如强化共振峰,中高频反射与衍射,等等,导至低音声染色和高音声染色.尽量消除负面影响,发挥改善低音的作用,是制作之根本.音 箱 材 料一.优质木材如红木、花梨木、桃木、檀木等名贵硬木,最好是无接缝的整板,为音箱制作的顶级材料,但材料难觅,价格昂贵,加工不易,常用于极品音箱中.次之为花柳木、枣木、梓木等,以比重大,木质均匀者为佳.新材潮湿易变形,需干燥处理后方可应用.二.中密度纤维板此类板材采用最多,成本低,材料易购,加工方便.但实际制作中发现其强度较差,易产生声染色,起哄,且材质细碎松软,不能用木螺钉结合,而只能钉以铁钉,在高声压下可能被震松,刚性亦差,不利于箱体的坚固性.三.中密度刨花板亦称为压模板,强度较高,成本亦低,加工不太方便,很多商品音箱,包括许多日本套装机配套音箱均用此材料,但有人反映其压结不实,含气隙较多,隔音性能差.最好能作特殊处理,提高隔音能力.四.高密度纤维板、刨花板以及胶合板 强度很高,隔音性能好,材料较易找,乃业余制作优质发烧音箱的首选材料,只是成本稍高,加工亦不容易,需要专用工具.特别是高密刨花板,硬度很高,不易着钉,本人谱髦谐E《下荻ぜ馔范交侥魏?应用手电钻预打稍细孔后再上紧固螺钉.五.无机物如有混凝土浇铸成形,用石质板料(大理石、混凝土板、花岗岩石板、石膏板等)以特殊工艺成形,或干脆用厚重的大陶罐作箱体.具有音染小,声场稳定等优点,常为发烧高手采用,只是太重,移动调音甚为不便.并且箱壁须作特殊处理.六.工程塑料、聚丙烯、增强改性环氧树脂、厚有机玻璃板等高密度高聚物(高分子聚合物)秉承现代先进的科技材料技术,许多欧美专业音箱厂商均用此技术创制出高档、高质音箱,如JBL MM系列音箱以高密度塑料做箱体,更有大名鼎鼎的JBLPROJECT K2 竟以厚达数英寸的有机玻璃制造高音喉.业余条件下断难实现.七.金属材料主要用于专业音箱和特殊场合,如舞台音箱、移动音箱、体育用全天候音箱、军事用全天候移动式音箱…….业余家们由于其金属箱体谐振频较高,声染色不易处理而极少采用.八.纸质材料多为初入烧道而经济拮据的烧友所采用,也不乏高手以此作箱体并以特殊工艺增强处理,例如以环氧树脂浸渍.如制作得当,效果亦佳.制 作 方 法一.板材结合此为绝大多数音箱包括一些极品音箱所采用的方法.工艺成熟,简便,并适于工厂化生产.二.浇铸成型此法最适于混凝(港称无缝石屎)及高聚物.三.掏腔法 1.顶级发烧音箱,将整块名贵硬木或结实石料掏出空腔,作为箱体.可以想象此法难度很大,成本高昂.偶见于欧美纪念型产品中.2.土炮族的大地音箱.即将地上掏空,作好干燥防潮处理,再装上面板及喇叭单元.成本低,音质亦很好,作超低音重放恰到好处,唯不能移动,对住所有条件限制.高烧至此,真可谓烧到了“家”.制 作 工 艺高保真音箱箱体内常处于急剧变化的高声压中,极易诱发杂音,谐振,造成音染,影响重放音乐的纯美.因此制作工艺十分重要.“加固消振,避免音染”为制作工艺的八字“方针”.一.广泛合理使用加强筋用于音箱中的薄弱环节.箱体内各个面所成结合角处,用足量的胶,宁多勿少,粘上粗壮的硬三角木或方木棒,再加木螺钉紧固,低音喇叭背部声压级最高,极易诱发箱音,于背面板正对此处粘上一块圆形硬木板加强,材料可利用面板开孔下的余料,对比较狭长的箱体,由于板料纵横比较大,强度及刚性变差,谐振点变低,渐近喇叭或箱体谐振频率,声染色危险极大,请不对称地胶上几块硬方木棒.此举在于消除缝隙漏气,加强箱体刚性,破坏谐振,避免诱发杂音和激起箱振.二.箱内添加适量吸声材料如超细玻璃棉、矿渣棉、纤维喷胶棉、真空棉、次者如泡沫海棉、棉絮、棉纸、柔软的卫生纸,吸收声能,控制音箱Q值,同时减轻箱振.对于密闭箱,需塞满整个箱体.对于倒相箱,前后左右上下壁敷三指宽厚的吸声材料,并于监听时作适量增减,以恰好抑制谐振峰为准.对于传输线式(即迷宫式),在易于产生驻波的声道拐折处敷设.对于号筒式(主要指后加载号筒式)音箱结构,于低音喇叭背后,及号筒中易产生驻波的地方安放少量吸声材料.其多寡均应依实际听音评价而定.三.增加箱壁声阻尼性能较简便的方法是箱体各里面浇一层1-2CM的沥青,贴敷多层高声阻尼材料(油毛毡、橡胶等).复杂但效果更好的方法是制作双层壁,中间装入干燥除尘细沙,或将箱体用高声阻尼材料浸润处理.此举阻断了声能向箱体的传播途径并大大降低了箱壁的Q值,对减轻甚至消除声染色十分有效.用无机物制作的箱体必须进行此项处理.四.箱体支撑加固此处指的是用硬方木、多孔木板或圆钢棒将前后壁及/或侧壁之间牢牢支撑,使箱壁不致被高声压激励产生讨厌的箱体声染色,多孔板兼有调Q的作用.钢棒可用具40号以上钢车成,Φ45mm以上,两端攻出Φ8mm固定螺丝孔,必要时(如箱体较大)可加焊法兰盘,用螺丝紧固于需加支撑的两壁之间,此法据一些前辈介绍,对消除因板材强度差而导致的箱音特别有效,故单独列书.五.喇叭单元的固定宜采用由外向里的固定方法,减小前腔效应.安装孔最好作沉孔处理,避免盆架凸出,造成绕射.盆架、箱体间以5-10mm橡胶垫密封隔离,以免声短路,并避免盆架振动传至面板辐射,干扰直接辐射声.六.采用特别的箱体内形和外形此处并非讨论音箱的声学方式,而是针对驻波,进行有效的予防.驻波的产生,会严重影响声学系统的性能.为消除驻波,破坏箱体内的平行性为其关键.如TANNOY SIX series采用了六边形体设计.许多专业音箱采用了扇形设计(JBL MM-SERIES、AC、等等).箱体外形对辐射特性亦有较大影响.过多过锐的棱角会产生衍射和干涉,可采用较钝的面过渡角.正面板的形状会影响服务角和相位特性,经特别设计的面板可改善之,包括曲面设计、阶梯状设计及其它特殊的形状.JBL 4208的正面板经过计算机辅助分析、设计,一反平面的传统而采用曲面,有效地改善了近声场的相位特性.BOSE301,是在精研直达、反射声技术后推出的Hi-Fi力作,它采用了独特的外形设计,在低音音箱的顶部削出一个斜面,安装上两只高音单元作前后不同方向上的辐射,有效地营造出均匀的音场,据称聆听立体声不再仅是安坐皇帝位时才有的'自私'享受.有消息说,一种形似大蜗牛的新型音箱,即将作为英国B&W;公司的新旗舰面世.所以在设计音箱时,也应解放思想,打破传统,大胆幻想,勤于动手,善于思考.七.面板上敷强吸声及强声阻尼材料盆架余振能传递到面板上,直接声辐射会反射到面板上,箱内空气劲度所产生的振动亦会在前面板反映,凡此种种,经面板辐射,与直接声叠加、干扰,引起频率特性曲线上出现更多的波峰与波谷,相位特性劣化,高音频下尤为严重,面板贴上'重声阻尼'材料是改善的有效方法.重声阻尼材料有高密度发泡泡沫塑料、特制毛毡、及工厂特制的音响专用吸音毡等.八.完工后的音箱应加支撑,与地面'隔离'起来,避免声音虚胖、音场不稳、透明度差.支撑的方法有支撑架、金属脚钉、硬木脚钉等.可广泛采用不同的硬材料试验决定,以45°~60°锥度之锥尖与地面接触.分 频 器 制 作分频器在音箱系统中占有很重要的地位,要保证高、低音信号准确无误地传输到各自单元而不产生干扰、失真、交调,频响曲线上不致因此产生较大的峰和谷,无大的相位畸变.目前多采用LC功率分频.至于电子分频则不在本文讨论之列.一.电感业余条件下,难以找到合乎要求的磁芯,更不谈测试其线性、磁通等性能.即使是在专业条件下,亦不易找到理想的磁芯,故磁芯结构难为处处斤斤计较、过于苛刻的发烧友所容.为减小附加电阻,应尽量采用较粗的优质漆包线(无氧铜线、大晶体铜线、单晶铜线更佳),以Φ1.0~1.2mm较优,并采用计算机辅助优化设计,使在电感量一定的情况下,电阻最小,电阻阻值一般应小于十分之一的喇叭阻抗.因顺磁性物质会影响电感量,电感线圈应尽量远离喇叭磁头、固定用镙钉、支撑用钢棒等顺磁性物质,各分频元件用环氧胶胶粘方式固定,避免增加磁饱和失真,以及引起分频点漂移.电感线圈之间会通过空间耦合而造成相互电磁干扰,应尽量远离,互相以磁轴线垂直安放,高、低音分音网络各自单独置于一块电路板上并远离是绝佳的发烧法.二.电容首选有定评的无感聚丙烯、聚苯乙烯等无感薄膜无极电容.避免选用无极电解电容,更不宜用有极电解反向串联代用.多只小容量电容并联使用,较单独一只大电容,其卷绕电感小得多,速度亦快的多,有更好的高频性能和音质.节约而不损发烧的办法是,仅于高、低音喇叭的信号通路上,选用以上元件,而旁路电感、旁路电容稍降低要求,用普通无极电容,较细线径的电感.三.接线市面上有多种优质音箱线,均可酌情采用.以芯线较粗,股数较多,含铜量较高者,铜晶体较长大者更靓声,如银线最好.注意提防假货和伪劣产品.方法以双路线(bi-wire)或三路线(tre-wire)为佳.许多杂志均有介绍.注意引线不要影响箱体的密闭性.结 束 语音箱制作是一门较复杂的系统工程,是介于机械工程学、声学、心理学、人机工程学之间的边缘科学技术,既是技术,也是艺术.以上各项措施,相辅相成,应在实际制作过程中,根据具体情况,对症处方,综合施用,一定能作出较满意的作品.

如何制作最简单的音响
最简易,效果有很好的音响应该就是无限大障板了,当然这是理论上的。实际这种结构的音箱虽不太多见,自己动手制作的难度很低,只要一快足够大的正方形木板(面积大于扬声器的10倍以上),在其一角三分之一处开孔安装扬声器即可,左右位置景象对称。制作资料在网上还是比较容易查找的的。

怎么制作简易音箱?
个就是迷宫式箱的设计图了 他是用隔板营造一段曲折的管道 管道总长度等于共震频率1/4波长的曲折管道在地板下制作了一个低音炮 你可以百度了解一下音乐 欣赏的是音乐本身 和谐柔美是关键 用音响突出某一方面已经失去HIFI的本意 就算我在交响乐大厅 50HZ以下低频 又能感受多少;4波长的时候 达到最好效果 换言之就是这个共振频率波幅最大 做为迷宫箱 设计 、制作比较不易 至于30HZ低音 有十寸喇叭 再有迷宫设计 就按你这设计图 30HZ是几乎肯定可以回放出来的 但是请想想就好了 反正一般人都听不见 但能感受到 如果你住单层屋或别墅还好 如果住楼房就请适可而止我曾经仿过惠威低霸改 8寸单元 九楼居屋开着音响 中等大声 感觉较HI的时候 某次为接朋友到了一楼 在楼道里都可以听到中低频的声音 这是扰民国外曾有人在野外小屋搞过一个试验 用真正1/、打造

我自己设计了一个10寸(惠威SS10)喇叭低音音箱

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多