分享

电闪雷鸣:伴随着核反应的发生

 老夫不请自来也 2018-01-01
文章来源:微信公众号  2017-11-28

自古以来,雷电在某种程度上能引起人类的敬畏和恐惧之心。古今中外,这一自然现象在许多的文化中都被解读成是神的杰作,比如中国的雷公电母,印度教里的因陀罗,希腊神话中的宙斯和挪威神话中的雷神索尔。

雷暴能引发一系列的现象,最常见的有断电、冰雹,还有宠物躲进床底下。事实表明,关于雷暴我们仍有一些需要了解的事。在《自然》杂志上发表的一项新的研究显示,雷暴还可以通过触发大气中的核反应而产生放射性。

                    | 图片来源:Kyoto University/Teruaki Enoto

   日本京都大学的一个研究小组已揭开了由雷暴引起的伽马射线级联放射的奥秘

 

这可能听起来像科幻小说式灾难的一个巨大阴谋论,但事实上这并不可怕。自20世纪初以来,科学家就注意到了电离辐射(可破坏细胞的粒子和电磁波)从太空流入地球大气层。这种辐射能与原子或分子反应,携带足够的能量将电子从原子或分子中释放出来,从而留下一个带正电荷的离子

就在一个多世纪以前,奥地利物理学家维克托·赫斯(Victor Hess)在离地球表面5公里上空的热气球上进行了电离测量。结果发现,随着高度的增加,电离率会迅速增长,这与假设电离辐射的来源来自地面时会出现的情况相反。因此赫斯得出结论:大气层外存在某种穿透力极强的辐射源,这种辐射被后人称为宇宙射线 ,他也因这一发现获得1936年诺贝尔物理学奖。

宇宙射线是由带电粒子组成的,主要是电子、原子核和质子, 而质子又与中子一起构成原子核。有些源自于太阳,还有一些来自星系中死亡恒星的爆炸即超新星。当这些宇宙射线进入地球大气层时,它们与原子和分子相互作用,产生亚原子粒子流,其中就包括不带电荷的中子。

           | 图片来源:Wikepedia

              模拟:在距离表面20公里的上空,当质子击中大气层产生的宇宙射线流

 

正是这些中子,使放射性碳定年法成为可能。大多数碳原子核中具有6个质子,还有67个中子,分别被称为同位素碳-12(¹²C)和碳-13(¹³C)。宇宙射线产生的中子可与大气中的氮发生反应,产生碳-14(¹C),它是一种不稳定的碳同位素,随着时间的推移,它会放射性衰变(发射辐射时分裂)成氮(N)

在自然界中,碳-14非常罕见,一万亿个碳原子中大约只有一个。但是,除了它的重量和具有放射性之外,碳-14与常见的其他碳同位素基本相同。它能被氧化形成具有放射性的二氧化碳,并随着植物的吸收进入食物链。

当一个生物体死亡并停止摄取碳时,生物体中碳-12与碳-14的比例将开始改变,已经在系统中的碳14会开始衰变。这是一个缓慢的过程,因为碳-14的放射性半衰期达5730年之久。由于这是可预测的,我们可以通过测量碳-12与样品中余下的碳-14的比例,来计算生物体的年龄。

如此看来,宇宙射线就是制造地球大气层中核反应的始作俑者。直到今天,我们还以为这是产生如碳-14这样的放射性元素的唯一天然方式。当字与 废料这些词搭配在一起时,听起来总是那么危险、邪恶,其实它指的只是在原子核中所起的变化。

追逐中子

1925年,著名的苏格兰物理学家和气象学家查尔斯·威尔逊(Charles Wilson)就提出雷暴也可能引发大气层的核反应。威尔逊在英国最高的山峰本尼维斯峰顶的气象观测站进行了实地考察,他对雷云的形成和大气电学十分着迷。可惜的是,当时的物理学还无法支持威尔逊的想法。例如,我们知道中子是核反应的产物之一,因此只要从雷暴中探测到这些粒子就能支持威尔逊的提议。然而直到1932年,中子才被发现,他的建议也一直无法被检验。

自威尔逊以来,已经有许多研究声称发现了雷暴中产生的中子,但没有一个提供了坚实的证据。其他一些研究则专注于寻找伴随在雷云中因闪电而产生的高能电子雪崩的强电磁辐射(X射线和伽玛射线)。计算表明,这些电子和伽马射线可以将中子从大气中的氮气和氧气中分离出来。但是,尽管已经观测到X射线和伽马射线,却从来还没能直接观测到在雷暴发生后的核反应。

在最新发表的论文里,研究人员采用了不同的方法,与其寻找捉摸不定的中子,他们更加关注核反应里的其它副产物。如果电子和伽马射线导致了氮和氧的不稳定同位素在雷击之后的核反应中形成,那么,它们应该在几分钟后就会衰变成碳和氮的稳定同位素。

 

               | 图片来源:Enoto, T. et al. Nature 551, 481–484 (2017) 

 

新的论文为证明雷暴可以诱发大气中的核反应提供了确凿的证据。例如,研究人员发现,雷暴能产生高能伽马射线,将中子从氮-14的原子核中击出,产生不稳定的氮-13同位素。同位素会衰变成一个中微子、一个正电子和一个稳定的碳-13原子核。最后,正电子与一个大气分子的电子湮灭,产生一对伽马射线,每一射线都有一个特征能量(即0.511兆电子伏特)

最关键的是,这种衰变还能产生正电子,即电子的反粒子。所有的粒子都有相应的反粒子,它们质量相同,但是电荷相反。当物质和反物质相遇的时候,它们瞬间湮灭成能量。这正是研究人员寻找的能量。他们使用放射线探测器俯瞰日本海,观察到冬季低云雷电后,立即出现因正电子-电子湮灭而产生的清晰的伽马射线的踪迹。这是雷云中发生了核反应的明显证据。

这些结果是很重要的,因为它们展示的是一种之前未知的地球大气中的同位素来源,包括碳-13、碳-14和氮-15。未来的研究还可能揭示更多,如氢、氦和铍的同位素等。

这些发现对天文学家和行星科学家也具有启示意义。雷暴诱发的核反应在其它行星(比如木星和金星)的大气中也可能发生,因此可能对这些大气的同位素组成有所贡献。然而,要确定这些贡献的大小将需要更详细地对这些行星上的雷暴进行伽玛射线和中子的观测。研究人员还发现,中子在雷电产生的等离子体之外形成,这表明这些中子并不能提供与等离子有关的信息,这与预期相反。

 撰文:Jim Wild(兰卡斯特大学空间物理教授)

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多