分享

一文学会贝氏体的变化知识

 一兵个人图书馆 2018-03-04


贝氏体:bainite

又称贝茵体。钢中相形态之一。钢过冷奥氏体的中温转变产物,α-FeFe3C 的复相组织。贝氏体转变温度介于珠光体转变与马氏体转变之间。

贝氏体转变的基本特征:

贝氏体转变兼有珠光体转变与马氏体转变的某些特征。归纳起来,主要有以下几点:

 

1贝氏体转变温度范

对应于珠光体转变的A1点及马氏体转变的MS点,贝氏体转变也有一个上限温度BS点。奥氏体必须过冷到BS以下才能发生贝氏体转变。合金钢的BS点比较容易测定,碳钢的BS点由于有珠光体转变的干扰,很难测定。贝氏体转变也有一个下限温度Bf点,但BfMf无关,即Bf可以高于MS,也可以低于MS

2贝氏体转变产物

与珠光体转变一样,贝氏体转变产物也由α相与碳化物组成的两相机械混合物,但与珠光体不同,贝氏体不是层片状组织,且组织形态与转变温度密切相关,其中包括α相的形态、大小以及碳化物的类型及分布等均随转变温度而异,就α相形态而言,更多地类似于马氏体而不同于珠光体。因此,Hehemann称贝氏体为铁素体与碳化物的非层状混合组织Aaronson则称之为非层状共析反应产物或非层状珠光体变态。可以看出,Aaronson强调的是贝氏体转变与珠光体转变一样,都是共析转变,只是因为转变温度不同而导致转变产物的形态不同。需要特别指出,在较高温度范围内转变时所得的产物中虽然无碳化物而只有α相,但从转变机制考虑,仍被称为贝氏体。

3贝氏体转变动力学

贝氏体转变也是一个形核及长大的过程,可以等温形成,也可以连续冷却形成。贝氏体等温需要孕育期,等温转变动力学曲线也呈S形,等温形成图也具有“C”字形。应当指出,精确测得的贝氏体转变的C曲线,明显地是由两条C曲线合并而成的,这表明,中温转变很可能包含着两种不同的转变机制。


4贝氏体转变的不完全性

贝氏体等温转变一般不能进行到底,在贝氏体转变开始后,经过一定时间,形成一定数量的贝氏体后,转变会停下来。换言之,奥氏体不能百分之百地转变为贝氏体。这种现象被称为贝氏体转变的不完全性,也称为贝氏体转变的自制性。通常随着温度的升高,贝氏体转变的不完全程度增大。未转变的奥氏体,在随后的等温过程中,有可能发生珠光体转变,称之为二次“珠光体转变

5贝氏体转变的扩散性

由于贝氏体转变是在中温区,在这个温度范围内尚可进行原子的扩散,因此,贝氏体转变中存在着原子的扩散。一般认为,在贝氏体转变过程中,只存在着碳原子的扩散,而铁及合金元素的原子是不能发生扩散的。碳原子可以在奥氏体中扩散,也可以在铁素体中扩散。由此可见,贝氏体转变的扩散性是指碳原子的扩散。

6贝氏体转变的晶体学

在贝氏体转变中,当铁素体形成时,也会在抛光的试样表面上产生“表面浮凸。这说明铁素体的形成同样与母相奥氏体的宏观切变有关,母相奥氏体与新相之间维持第二类共格(切变共格)关系,贝氏体中的铁素体与母相奥氏体之间存在着一定的惯习面和位向关系。

7贝氏体中铁素体的碳含量

贝氏体中铁素体的碳含量一般也是过饱和的,而且随着贝氏体形成温度的降低,铁素体中碳的过饱和程度越大

上述主要特征可以看出,贝氏体转变在某些方面与珠光体转变相类似,而要某些方面又与马氏体转变相类似。

贝氏体的分类:


(1) 按在中温区贝氏体形成的位置,分为上贝氏体和下贝氏体。

(2)按组成相分类,可分为无碳化物贝氏体和有碳化物贝氏体

(3)按贝氏体形态可分为羽毛状贝氏体、粒状贝氏体、柱状贝氏体、板条状贝氏体、针状贝氏体、片状贝氏体、竹叶状贝氏体、正三角形贝氏体、N形贝氏体、蝴蝶形贝氏体等。

(4)按含碳量分类,可分为超低碳贝氏体、低碳贝氏体、中碳贝氏体、高碳贝氏体。

虽然我们对贝氏体转变了解得还很不够,但贝氏体转变在生产上却很重要,因为在低温度范围内,通过贝氏体转变所得的下贝氏体具有非常良好的综合力学性能,而且为获得下贝氏体组织所采取的等温淬火工艺或连续冷却工艺均可减少工件的变形和开裂。为了获得贝氏体,除了采用等温淬火的方法以外,也可在钢中加入合金元素,冶炼成贝氏体钢,如我国的14CrMnMoVB14MnMoVB等。这类钢在连续冷却条件下即可得到贝氏体。因此,对贝氏体转变进行研究和了解,不仅具有理论上的意义,而且还有着重要的实际意义。


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多