分享

一起来认识一下W玻色子,Z玻色子和光子,他们的命名一看就懂

 探索之子 2018-03-10

导读:本章摘自独立学者灵遁者量子力学科普书籍《见微知著》。此文旨在帮助大家认识我们身处的世界。世界是确定的,但世界的确定性不是我们能把我的。

上面的内容,就是人类目前对于胶子的研究和认识。怎么样?到现在为止,你的大脑还能储存多少内容? 其实你的大脑储存东西的极限是不存在的。但单次储存内容的极限是存在的。所以你可以休息一天,明天继续来看下面的内容。

一起来认识一下W玻色子,Z玻色子和光子,他们的命名一看就懂

再来看一下关于W粒子和Z粒子的知识内容。在物理学中,W及Z玻色子(boson)是负责传递弱核力的基本粒子。它们是1983年在欧洲核子研究组织发现的,被认为是粒子物理标准模型的一大胜利。

W玻色子是因弱核力的“弱”(Weak)字而命名的。而Z玻色子则半幽默地因是“最后一个要发现的粒子”而名。另一个说法是因Z玻色子有零(Zero)电荷而得名。

W玻色子有两种,分别有 +1(W+)和−1(W−)单位电荷。W+是W−的反粒子。而Z玻色子(Z0)则为电中性的,且为自身的反粒子。这三种粒子皆十分短命,其半衰期约为 3 \times 10^{-25}秒。

一起来认识一下W玻色子,Z玻色子和光子,他们的命名一看就懂

这些玻色子在各种基本粒子之中属重型的一类。W的质量为80.399 ± 0.023 GeV,而Z则为91.1876 ± 0.0021 GeV。它们差不多是质子质量的一百倍——比铁原子还要重。

玻色子的质量是十分重要的,因其限制了弱核力的相用范围。相对地,电磁力的相用范围无限远因为光子无质量。

于1950年代量子电动力学的空前成功后,科学家希望为弱核力建立相似的理论。于1968年,这个论调在统一电磁力和弱核力后达到高潮。提出弱电统一的谢尔登·格拉肖、史蒂文·温伯格和阿卜杜勒·萨拉姆因此得到1979年的诺贝尔物理学奖。他们的弱电理论不止假设了W玻色子的存在来解释β衰变,还预测有一种未被发现的Z玻色子。

灵遁者量子力学科普书籍《见微知著》电子版在灵遁者淘宝有。

一起来认识一下W玻色子,Z玻色子和光子,他们的命名一看就懂

W和Z玻色子有质量,而光子却没有——这是弱电理论发展的一大障碍。这些粒子现时以一个SU(2) 规范理论来精确描述,但理论中玻色子必定无质量。譬如,光子无质量是因为电磁力能以一个U(1)规范理论解释。某些机制必须破坏SU(2)的对称来给予W和Z玻色子的质量。其中一个解释是由彼得·希格斯于1960年代晚期提出的希格斯机制。它预言了一种新粒子——希格斯玻色子(现今此粒子已被证实存在了)。

一起来认识一下W玻色子,Z玻色子和光子,他们的命名一看就懂

SU(2)测量仪理论、电磁力和希格斯机制三者的组合称为格拉肖-温伯格-萨拉姆模型。它是目前广泛接受为标准模型的一大支柱。

W和Z粒子的发现是欧洲核子研究组织的主要成就之一。首先,于1973年,实验观察到了弱电理论预测的中性流作用;那时加尔加梅勒的气泡室拍摄到有一些电子突然自行移动的轨迹。这些观测结果被诠释为中微子借由交换没有轨迹的Z玻色子与电子互相作用。由于中微子是侦测不到的,因此实验中只能看到电子因着交互作用而造成的动量改变。

W和Z粒子要到能量够高的粒子加速器建立后才正式被发现。第一部这样的加速器是超级质子同步加速器,其中卡洛·鲁比亚和西蒙·范德梅尔在1983年一月进行的一连串实验给出了明显的W粒子证据。这些实验称作“UA1”(由鲁比亚主导)和“UA2”,且为众多人合作的努力成果。

范德梅尔是加速器方面的驱策者(随机冷却)。UA1和UA2在几个月后(1983年五月)找到Z粒子。很快地鲁比亚和范德梅尔因而得到1984年的诺贝尔物理学奖,这可算是保守的诺贝尔奖基金会自成立以来相当不寻常迅速的一次。

一起来认识一下W玻色子,Z玻色子和光子,他们的命名一看就懂

再来说说光子,光子是我们大家都比较熟悉的粒子。光子Photon)是一种基本粒子,是电磁辐射的量子。在量子场论里是负责传递电磁力的力载子。

这种作用力的效应在微观层次或宏观层次都可以很容易地观察到,因为光子的静止质量为零,它可以移动至很远距离,这也意味着它在真空中的传播速度是光速。如同其它微观粒子,光子具有波粒二象性,能够展现出波动性与粒子性。例如,它能在双缝实验里展示出波动性,也能在光电效应实验里展示出粒子性。

阿尔伯特·爱因斯坦在1905年至1917年间发展出光子的现代概念,这是为了解释一些与光的古典波动模型不相符合的实验结果。当时被普遍接受的经典电磁理论,尽管能够论述关于光是电磁波的概念,但是无法正确解释黑体辐射与光电效应等实验现象。

半古典理论在麦克斯韦方程组的框架下将物质吸收光和发射光所涉及的能量量子化,而行进的光波仍采古典方法处理;如此可对黑体辐射的实验结果做出合理解释。

爱因斯坦的主张与普朗克的半古典理论明显不同,他提出光本身就是量子化的概念,当时爱因斯坦称之为“光量子”(英语:light quantum)。

一起来认识一下W玻色子,Z玻色子和光子,他们的命名一看就懂

虽然半古典理论对于量子力学的初始发展做出重大贡献,从于1923年观测到的电子对于单独光子的康普顿散射开始,更多的实验证据使爱因斯坦光量子假说得到充分证实。由于这关键发现,爱因斯坦于1921年获颁诺贝尔物理学奖。

光子的概念带动了实验和理论物理学在多个领域的巨大进展,例如激光、玻色-爱因斯坦凝聚、量子场论、量子力学的统计诠释、量子光学和量子计算等。在物理学外的其他领域里,这概念也找到很多重要应用,如光化学、高分辨显微术,以及分子间距测量等。在当代相关研究中,光子是研究量子计算机的基本元素,也在复杂的光通信技术,例如量子密码学等领域有重要的研究价值。

根据粒子物理的标准模型,光子的存在可以满足物理定律在时空内每一点具有特定对称性的理论要求。这种对称性称为规范对称性,它可以决定光子的内秉属性,例如质量、电荷、自旋等f。光子的自旋为1,因此是玻色子,不遵守泡利不相容原理。

电磁场可用规范场论来理解为要求时空中每一个位置都满足对称性要求的结果。对于电磁场,这种规范对称性是复数的局域阿贝尔U(1)对称性,复数代表着可以自由改变其相位,而不改变其实数部分,例如能量或拉格朗日量是复数的实部。


在对称不破缺的前提下,阿贝尔规范场的量子必须是无质量的、不带电荷的玻色子,因此理论预言光子为无质量无电荷并带有整数自旋的粒子。电磁相互作用的形式决定了光子的自旋一定为±1,即螺旋性一定为正负h{\displaystyle \pm \hbar \,}正负,对应着光子经典概念中的左旋和右旋;而虚光子也可能会具有无物理意义的其他自旋态。

物理学家一直在致力于检查实验结果和标准模型的预言相矛盾之处,特别是从实验中计算光子所带电荷和内秉质量的上限,任何一个值非零都是对标准模型致命的破坏。然而,目前为止所有实验都证明光子具有的电荷和内秉质量为零,现今最为广泛接受的上限值分别为5×10−52库仑(3×10−33倍基本电荷)和1.1×10−52千克(6×10-17电子伏特)。

在流行的标准模型中,光子是弱电相互作用的四个规范玻色子之一,其他三个是参与弱相互作用的W+, W−和Z0,它们都具有内秉质量,因此需要一种SU(2)规范对称破缺的机制来解释。

一起来认识一下W玻色子,Z玻色子和光子,他们的命名一看就懂

光子和W、Z玻色子的电弱理论是由格拉肖、萨拉姆和温伯格完成的,三人因此项工作获得1979年的诺贝尔物理学奖。而大统一理论的创立,是物理学家试图将这四种规范玻色子和传递强相互作用的八种胶子规范玻色子联系起来的尝试;然而大统一理论的一些关键性预言,例如质子的衰减,还没有在实验中得到证实。

当一个系统辐射出一个光子,从相对系统静止的参考系来看,能量相应地降低了一个光子对应的能量E=hv,这造成系统质量降低了{\displaystyle E/c^{2}\,};同样地,系统吸收光子时质量也会增加相应的值。

这一概念被应用于狄拉克发起的理论——量子电动力学的关键性预言中。在这理论里,电子(或更普遍性的,轻子)的质量被修正,将虚光子的质量贡献纳入计算,应用到重整化技术。这种“辐射修正”在量子电动力学里给出一些预言,例如,轻子的磁偶极矩、兰姆位移、束缚轻子对的超精细结构(例如μ介子素或电子偶素)。

既然光子对能量-动量张量有贡献,根据广义相对论它们也会产生引力场。反过来,光子本身也会受到引力场的作用,在弯曲的时空中它们的路径也会发生弯曲,在天体物理学中这被应用为引力透镜。在强引力场中运动时光子的频率会发生引力红移,这一点已经在庞德-雷布卡实验(英语:Pound-Rebka experiment)中得到证实。当然,这些效应并不仅限于光子,而对经典的电磁波同样成立。

更多关于光学知识的介绍,在前面几章有论述,大家可以回头多看看。

一起来认识一下W玻色子,Z玻色子和光子,他们的命名一看就懂

最后一个要认识的粒子是希格斯玻色子。这个前面第第二十四章《希格斯玻色子,让一切重起来!》有详细的论述,大家返回去来看。

希格斯玻色子(英语:Higgs boson)是标准模型里的一种基本粒子,是一种玻色子,自旋为零,宇称为正值,不带电荷、色荷,极不稳定,生成后会立刻衰变。希格斯玻色子是希格斯场的量子激发。根据希格斯机制,基本粒子因与希格斯场耦合而获得质量。在2013年的时候,希格斯玻色子被发现了。

一起来认识一下W玻色子,Z玻色子和光子,他们的命名一看就懂

以上就是所有61种基本粒子的相观知识和历史实验发现。对于我们来说,这不是终极理论。就像文中提到的,还有一些科学家在搜索发现新的粒子。

所以人类永远不会无聊,因为有太多未解之谜,宇宙之谜等着我们去破解 。

摘自独立学者灵遁者量子力学书籍《见微知著》

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多