分享

NMOS场效应管比PMOS场效应管使用更频繁真实原因

 geros 2018-04-11

我们的口号是:为中国的科普事业努力奋斗!加下我QQ吧:56943772!

在前一节,我们对PMOSNMOS两种增强型场效应管的开关电路作了详细的介绍, 并且还提到过一种广为流传的说法:相对于NMOS管,PMOS管的导通电阻更大、速度更慢、成本更高等,什么情况?我们还是从头说起吧!

如果读者有一定的电子技术应用经验的话,对NMOS管开关电路的使用场合肯定是如数家珍,几乎所有的开关电源拓扑都偏向于使用NMOS管(而不是PMOS管),如正激、反激、推挽、半桥、全桥等拓扑,NMOS管的应用电路案例真心不要太多,如下图所示(当然,这些也并不全是完全独立的,比如ZCS正激推挽):

                           

如果让大家举个PMOS管实际应用电路,恐怕大多数读者除了下图所示的电源开关控制电路外,实在是想不出更多其它实用电路了。

我们暂且不管原因何在,但是NMOS管应用场合远比PMOS管要广泛得多,这已经是一个不争的事实,PMOS管可以做到的NMOS管同样也可以做到,真应了那句广告词:人无我有,人有我优。

我们可以看看国际整流器公司(International Rectifier,IR)官方网站的所有MOS管的分类,如下图所示:

除两个红圈所标注的内容是PMOS管外,其它都是NMOS管,并且NMOS管在电压档次上比PMOS管要细分得多,从侧面可以说明NMOS管的应用场合比PMOS要大得多(因为应用多,所以需求多,继而型号多),如果你粗略地统计一下PMOSNMOS型号的数量,NMOS管绝对独占鳌头,这又是什么情况?

 有人说:应该是PMOS管在使用的时候控制电路太过复杂,与NMOS管的驱动比较,PMOS还需要额外的三极管,成本太高。那我们继续往下看。 

如果读者对电子技术足够感兴趣且好奇心总是不一般的话,应该对降压型BUCK单片开关电源电路有一定的了解,那你自然会遇到类似下图所示的电路:(来自TI降压电源芯片LM2596数据手册)

 

这是我们最常用的BUCK拓扑降压芯片的典型应用电路,地球人几乎都知道,但是有些降压芯片应用电路却稍微有所不同,如下图所示:(来自TI降压电源芯片TPS54202H数据手册)

看到没有,与LM2596S芯片相比多了一个BOOSTBST)引脚,一般在该引脚与SW之间串一个小电容,这是为什么呢?

 有经验的读者可能会说:这种芯片是采用同步整流方案(关于同步整流可参考文章【开关电源(1)之BUCK变换器】,简单的说,就是用MOS管来代替续流二极管,以达到降低损耗继而提升转换效率的目的),内部是用两个NMOS管配合工作的,需要一个自举升压电路,所以才需要外接一个电容。没错!该芯片开关管结构如下图所示:

然而同步整流方案与使用NMOS管作为开关管之间没有因果关系,换言之,就算是异步整流方案,芯片也会偏向于使用NMOS管,如下图所示(来自TI降压电源芯片LM25011数据手册):

LM25011就是异步整流方案,该芯片的内部开关管的结构如下图所示(来自TI降压电源芯片LM25011数据手册):

总之一句话:如果内部开关管使用场效应管,那大多数是NMOS管,而PMOS管几乎(大多数,不是所有)是没有使用的机会,尽管PMOS管的内心可能在呐喊着:老板,给我一次机会吧,我可以的(就像你内心想对老板呐喊一样,这种悲壮的心情你肯定是懂的,么么哒)!然而,这并没有什么用。

我们在文章《开关电源(1)之BUCK变换器》中详细介绍了降压型BUCK开关电源拓扑,并且还用下图做了一次仿真:

PMOS管来实现开关切换功能的电路是要多简洁就有多简洁,明明一个PMOS管就能搞定的事,非得使用NMOS管还弄个稍显复杂的自举电路,就像很多明星,明明可以靠脸吃饭,偏偏要靠才能。然而,芯片厂家就是嫌弃它,你简洁怎么了?我就是不用你!你自己上思过崖面壁反省去(不是华山派令狐冲呆的那个地方)。

 同样的现象也存在于BOOST变换器芯片中,BOOST单片升压芯片典型应用电路如下图所示:(来自TI升压电源芯片LM2577T数据手册)

同样,有些升压芯片多了一个BOOST/BST引脚,如下图所示(来自TI升压电源芯片TPS61178X数据手册):

这里要说明一下:上图中芯片外围接有的PMOS管并不是必须的,因为BOOST拓扑由于其本身的特性,在芯片不工作时输出是无法关闭的(输出电压略小于输入电压),这与BUCK拓扑不同,如果需要完全关闭电压输出,必须额外添加一个PMOS管开关电路,这就是我们在文章开关介绍的PMOS管电源开关控制电路。

 该芯片的内部开关管的结构如下图所示(来自TI升压电源芯片TPS61178X数据手册):

当然,异步整流升压芯片就没必要再弄个BST引脚了,因为NMOS管已经是比较理想的架构了,我们在文章《开关电源(2)之BOOST变换器》中也是用NMOS管来仿真的,如下图所示:

PMOS管有时也纳了闷了:我招谁惹谁了我,辛辛苦苦勤勤恳恳地工作几十年,竟然没人欣赏我,不由得心生“既生瑜,何生亮”之感慨,然则原因何在?

 前面提到过,PMOS管的导通电阻比NMOS管的导通电阻要大,我们可以找外部参数尽量相同的数据手册来对比一下,如下图所示:

 在相同的工艺、耐压等条件下,NMOS导通电阻为0.036WW就是欧姆的意思,形状很像符号Ω),而PMOS导通电阻要大得多,其值为0.117Ω,当然,这并不能作为PMOS管的导通电阻比NMOS要大的直接证据,然而事实上,在相同的工艺及尺寸面积条件下,PMOS管的导通电阻确实要比NMOS管要大,这样PMOS开关管的导通损耗比NMOS要大。

 PMOS管应用场合比较少的原因归结于P沟道导通电阻更大似乎是个比较理想的答案,然而我们还是不禁要问一下:为什么PMOS管的导通电阻比NMOS要大呢?这主要是源自于导通沟道在一个特性方面的差别:电子迁移率(Electron mobility

 我们在文章《二极管》里讲解PN结的时候,已经提到过P型半导体与N型半导体的由来,P型半导体就是在本征半导体(纯净无掺杂的)中掺入+3价的元素(如硼元素),其结构如下图的所示:

在合理的范围内掺入的杂质越多,则多数载流子空穴就更多,P型半导体的导电性也似乎将会变得更好。

 相应的,N型半导体就是在本征半导体(纯净无掺杂的)中掺入+5价的元素(如磷元素),其结构如下图的所示:

 同样的,在合理范围内掺入的杂质越多,则多数载流子电子就更多,N型半导体的导电性也因此似乎将会变得更好,而PMOS管或NMOS管的导通沟道就是P型或N型,这看起来两者没有太大的区别,只要控制掺入杂质的数量,就可以控制掺杂半导体的导电性,但实际上并非这么回事!因为半导体的导电性不仅与载流子(电子或空穴)浓度有关,还与载流子的迁移率(速度)有关

 我们从初中物理学就知道,导体之所以容易导电,是因为自由电子比较多,而绝缘体很难导电是因为自由电子比较少,半导体中的导电性也是类似的。

NMOS管是导电沟道是N型半导体,其多数载流子是电子,当半导体外部施加电场时,载流子电子将按下图所示的迁移:

载流子电子在由A点到F点的运动过程中,不断地与晶格原子或杂质离子发生碰撞,因此运动轨迹不是直线的,只有一个平均的迁移方向(细节可自行参考相关文档),但有一点需要注意的是:载流子电子在迁移过程中不会进入共价键中,总是在图所示的“空档”移动,这些地方没有共价键位置的束缚力,因此载流子电子的迁移率(速度)比较高。

 在《半导体物理学》中,我们把自由电子存在的空间叫做导带,而把共价键所在的空间叫做价带,很明显,价带中有来自晶格原子(如硅、锗)或杂质离子(如硼、磷)的束缚力,因此价带(共价键)中的电子要跑出来就必须具备一定的能量(如光或热),而电子在导带中则不需要。

 PMOS管是导电沟道是P型半导体,其多数载流子是空穴,当半导体外部施加电场时,载流子空穴将按下图所示的迁移:

 空穴移动可以看作是电子的反向移动,每一次空穴移动时,都可以看成是电子从导带中跳入到价带中(填充某个空穴),再从价带中跳出来往相邻的价带中移动,很明显,空穴迁移的速度是不如电子迁移速度的,因为电子一旦跳进价带(共价键)中,就会受到共价键的束缚力,需要更多的能量激发才能跳出来。

 你可以将这种迁移方式比作游泳,NMOS管相当于在水里游泳,而PMOS管相当于在油水相间的泳道中游泳,很明显,在相同的条件下,在水里游泳的速度会更快一些,如下图所示:

 电子与空穴迁移率的差别表现之一在场效应管的开关速度上,我们在文章《逻辑门》中已经介绍过,CMOS反相器是由一个PMOS管与NMOS管来完成的,如下图所示:


当输入A=0时,输出Y=1,当输入A=1时,输出Y=0,由于PMOS管(上侧带圈圈的)的空穴迁移率比NMOS管的电子迁移率要小,因此,在相同的尺寸条件下,输出Y的上升速率比下降速率要慢,这样带来的结果是:开关损耗相应会比NMOS管大一些(关于“开关损耗”可参考文章【开关电源(1)之BUCK变换器】)。

 当然,你可以做一个与NMOS管驱动能力相同的PMOS管,但需要的器件面积可能是NMOS管的23倍,这就是钱呐,而且器件面积会影响导通电阻、输入输出电容,而这些参数会影响电路的延迟。

 同样,在相同的尺寸条件下,PMOS管沟道导通电阻比NMOS要大一些,这样开关导通损耗相应也会比NMOS管要大一些(关于“导通损耗”可参考文章【开关电源(1)之BUCK变换器】)。

 正是因为迁移率的差别才有速度与沟道导通电阻的差别,才导致PMOS管的应用范围受到限制,这样PMOS的市场用量必然不如NMOS管,从工艺上来讲,PMOS管与NMOS管的制造并无多大不同,但市场经济的杠杆总是无处不在的,所以PMOS管比NMOS管贵很大一部分也是由市场决定的(材料成本低并不总意味着价格低),而不能简单地认为:因为PMOS管与NMOS管贵,所以应用场合少。

鉴于NMOS管的使用场合远比PMOS管要广泛,下一节我们来讨论一下NMOS管的各种驱动方式。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多