行者无忌图书馆 / 超常现象研究 / 刘慈欣小说《三体》中的三体问题原来就是...

0 0

   

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

2018-05-01  行者无忌...


三体文明存在吗?

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

在距离地球4光年之外的半人马座上,有一个由三颗恒星和一颗行星所组成的恒星系统。这三颗恒星的质量以及彼此之间的距离基本相等,在互相的引力作用下,它们的运行轨迹几乎不可预测。但三颗恒星的光和热在其行星上孕育了一种高级智慧文明——三体文明。

由于三颗恒星运行轨道不稳定,无法计算,三体行星上便出现了两种纪年方法:恒纪元和乱纪元。当行星围绕着三颗恒星中的某一颗恒星运行时,温度适宜,这便是恒纪元,只有在恒纪元,三体人才能繁衍生息,发展文明;当行星同时受到三颗恒星的引力作用时,温度可能极冷也可能极热,这便是乱纪元,乱纪元时候,三体智慧生命只能进入休眠状态以保存自己,即便如此,乱纪元也已经让他们的文明百余次毁灭于大火或冰冻中。

三体世界本来拥有12颗行星,但在漫长的时间里有11颗被恒星吞噬,三体人居住的第12颗行星也即将被恒星吞噬。他们终于明白三体问题不可解,只有飞向宇宙寻找新家园,才能让三体文明持续下去。

终于有一天,三体人探知到了地球的存在,认定地球是一个他们可以长久居住的乐土。于是,三体人的星际舰队便以相当于光速的十分之一的速度向地球进发。地球人也通过望远镜探知到了三体舰队的存在,地球陷入一片恐慌之中……

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

以上是我国当代知名科幻作家刘慈欣科幻小说《三体》中的内容。最近几年来,《三体》系列红遍大江南北,被视为中国科幻文学的里程碑之作。伴随着《三体》小说的热销,三体问题也为众多的读者所熟知。刘慈欣在小说里构造出了一个复杂而迷人的宇宙体系,但是,这样一个忽然很规律、忽然很紊乱的三体系统在宇宙中是不存在的,即使存在,也会很快崩溃。所谓的行星,要么飞离恒星要么飞向恒星。如果要像三体中说的那样时近时远,还能让一个文明产生,几乎是完全不可能的。

不过,小说中提到三体问题,倒还真是人类科学家数百年来面临的一个巨大难题。

三体问题

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

1900年,数学家希尔伯特在他著名的演讲中提出了23个困难的数学问题以及两个典型例子,第一个是费尔马猜想,第二个就是所要介绍的N体问题的特例——三体问题。对于20世纪数学的整体发展,这两个例子所起的作用要比23个问题中的任何一个都更加巨大。

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

最终,费尔马猜想在1994年被美国的怀尔斯解决,而三体问题却仍然是数学大厦上的一朵乌云,挥之不去。

三体问题是天体力学中的基本模型,即探究三个质量、初始位置和初始速度都为任意的可视为质点的天体,在相互之间万有引力的作用下的运动规律。

如下图所示,它们有无数种可能的运动轨迹。最简单的例子就是太阳系中太阳,地球和月球的运动。

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

套用小说中数学家魏成的描述:三体问题的真正解决,是建立一种数学模型,使得在已知任何一个时间断面的初始运动矢量时,能够精确预测三体系统以后的所有运动状态。

一般的三体问题,每一个天体在其他两个天体的万有引力作用下,其运动方程都可以表示成6个一阶的常微分方程,因此,一般三体问题的运动方程为18阶方程,必须得到18个积分才能得到完全解。

然而,现阶段还只能得到三体问题的10个初积分,远远不足以解决三体问题。

三体问题难倒牛顿

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

自从牛顿提出万有引力定律以来,人们就很容易计算出宇宙中两个天体在引力作用下的运动情况,得到天体的运行轨道。但是,有第三个天体存在的话,情况就完全不同了,这三个天体之间的作用力关系就非常复杂以至于难以求解。而天体更多时,问题就更加复杂了。

在实际的星空中,天体系统往往由很多天体构成,比如太阳、地球、月球构成了“三体”,太阳、冥王星以及冥王星的卫星“卡戎”也构成了“三体”,只由两个天体构成的系统很少。不过,计算这些星体的运动轨道时,完全可以按照两个天体情况来计算,比如,计算地球的公转轨道,就不必考虑月球的影响;计算月球的绕地轨道,也不必考虑太阳的影响。

但是,如果真的遇到需要第三者的影响时,该如何计算呢?牛顿在攻克二体问题后,立即着手研究三体问题。但由于难度太大,他计算到头痛欲裂也没能找到答案,于是谨言慎行的牛顿没有留下任何关于这个问题的论述。

其实,计算三体运动的轨迹已经是对物理实际简化得很厉害了,只需考虑质点的运动方程,而不必考虑其他因素。科学家们在研究天体运动轨迹时,通常把天体当做一个有质量的点来看待,这就是“质点”。但是,只要研究实际的地球运动,就已经比质点复杂得多,地球别说不是点,连球形都不是,粗略看来是个赤道上胖出来一圈的椭球体。于是,在月球引力下,地球的自转轴方向就不固定,因此北极星也不会永远是那一颗(天文学家们早已算出,4800年前,北极星不是现在小熊座α星,而是天龙座α星;未来到公元4000年前后,仙王座γ星将成为北极星;到公元14000年前后,天琴座α星织女星将获得北极星的美名)。而在考虑潮汐作用时,地球都不能看成是“硬”的了,地球自转也因此越来越慢。如果把这些问题都考虑进去,那么任何方程都无法精确计算出地球的运动情况。

然而即使是极其简化了的三体问题,从牛顿那时开始,在随后的200多年中,欧拉、拉格朗日、拉普拉斯、庞加莱等等数学大师们绞尽了脑汁也未能将它攻克。

千辛万苦找到特解

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

由于三体问题不能严格求解,在研究天体运动时,都只能根据实际情况采用各种近似的解法,研究三体问题的方法大致可分为3类:

第一类是分析方法,其基本原理是把天体的坐标和速度展开为时间或其他小参数的级数形式的近似分析表达式,从而讨论天体的坐标或轨道要素随时间的变化;

第二类是定性方法,采用微分方程的定性理论来研究长时间内三体运动的宏观规律和全局性质;

第三类是数值方法,这是直接根据微分方程的计算方法得出天体在某些时刻的具体位置和速度。这三类方法各有利弊,对新积分的探索和各类方法的改进是研究三体问题中很重要的课题。

在“三体问题”被提出的三百年内,仅仅三种类型的解被发现,而在1993年,两个物理学家又发现了13类新解。

(1)、8字型族——三个物体在一条8字形的轨道上互相追逐。

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

(2)、拉格朗日-欧拉族——三星成三角形,围绕三角形中心旋转。

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

(3)、布鲁克-赫农族——轨迹复杂,两个物体在里层来返往复,第三个物体在外层旋转。

(4)、塞尔维亚物理学家Milovan ?uvakov和VeljkoDmitra?inovi?发现新的13族特解,三个天体在空间中的排列组合有无限种。他们利用计算机模拟,从现有的特解出发,调整初始条件直到新类型的轨道被发现。

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

其实,三体运动已经是对实际物理简化得很厉害了,比如说对质点,球体自转、形状已经统统不考虑了,然而即使是这样,牛顿、拉格朗日、拉普拉斯、泊松、雅可比、庞加莱等等大师们为这个问题穷尽精力,也未能将它攻克。

18世纪的法国数学家拉格朗日在这个问题上做出了突破性的贡献,他研究的是所谓的椭圆轨道限制性三体问题,椭圆轨道是宇宙中天体运动的常见轨道。

1767~1772年间,拉格朗日对限制性椭圆轨道三体运动求出了五个特解,并由此计算出5个在三体系统中引力达到平衡的所谓“拉格朗日点”,如果把物体放到三体系统的拉格朗日点上,物体会保持相对静止状态。

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

这5个拉格朗日点简称为L1-L5。其中,L1-L3都位于两个大天体的连线或延长线上,L1-L3都是不稳定的,也就是说,如果这个点上的物体受到外界扰动而偏离了这个位置,就不会再回到这个位置,而是日渐远离。L4和L5分别位于较小天体绕较大天体运行的轨道上,与两较大天体组成非常稳定的等边三角形。当时限于观测条件,这个计算结果无法验证,不过100多年后,天文学家在太阳系里找到了实例,那就是特洛伊小行星群,这些小行星分成两组,分别在木星-太阳系统的L4和L5上,和木星、太阳恰好组成了两个等边三角形。自然界真的是让人惊叹!

20世纪80年代,天文学家发现土星的卫星系统中存在着好几个类似的等边三角形。人们进一步发现,在自然界各种运动系统中(包括微观运动),都有拉格朗日点。甚至在地月系统中也存在,在月球轨道上,月球前后各60度同地球和月球距离成等边三角形的两个位置存在两片非常稀薄的气体云,那两片云与月球一同绕地球旋转,并永远和地球、月球保持这种等边三角形的关系。

三体系统的'蝴蝶效应'

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

拉格朗日找到了几个有限的特解,那么,三体问题能找到通用解吗?1885年,酷爱数学的瑞典国王奥斯卡二世悬赏征求太阳系的稳定性问题的解答,这其实是三体问题的一个变种。来自法国的一位只有33岁的年轻学者庞加莱接受了这一挑战,由于这一问题是如此的复杂,他决定也像拉格朗日从较为简单的限制性三体问题着手研究,试图突破特解,找到普遍性的通用解。

但是在研究过程中,庞加莱发现,这几乎是不可能的事。经过整整三年的努力,他断定这个问题无法完全解决,决定收工。庞加莱把自己的研究成果寄到论文评审委员会,在论文开头写了一句:“繁星无法超越。”

庞加莱没有解决三体问题,但他还是由于对这个问题作出的贡献,而于1888年获得了瑞典国王的奖金。

事情没有结束。在后续研究中,庞加莱发现,三体问题无法解决的根源在于:在三体系统中,由于引力的互相干扰,某个天体的初始数据只要有很小的变动,后来的状况可能就会有极大的不同,计算结果也会出现无数的不同,这就导致了计算结果的毫无意义。当时,庞加莱试图画出一些运动轨道,却发现那些图形复杂、混乱到无法画出的地步!

这其实是一个典型的混沌系统,混沌系统会将初始条件的最细微的差别无限放大,随着时间的推移,这最开始的一点变化会使整个系统的运动完全不同,让我们无法计算。就像那句描述混沌理论的名言:“一只巴西热带雨林中的蝴蝶扇动几下翅膀,可能在美国德克萨斯州引起一场龙卷风。”三体问题也是如此。

混沌理论是20世纪继相对论和量子力学以后基础科学的第三大重要成果,但庞加莱通过对三体问题的研究,证明了系统初始条件的敏感性,这是混沌理论最早的研究。

超出想象的星球轨道

刘慈欣小说《三体》中的三体问题原来就是一个科学难题

几百年过去了,从牛顿到庞加莱,那些天才的数学大师做了各种尝试,终于承认,不可能找到三体问题的一般解,只可能找到特殊解(特定条件下的特殊轨道)。

但是特殊解也很难得到,找到任何一类解都面临重重困难。三个物体在空间种有无数种陈列方式,必须要找到合适的初始条件(如起始点,速度等),才可以让体系重新回到起点重复运转。拉格朗日最早提出了一些解后,而直到20世纪70年代后,科学家才在现代计算机的帮助下找到了一些新解。除了上面说的拉格朗日-欧拉族、布鲁克-赫农族和“8”字形族,不久之前,科学家又找到了三体问题的更多特解。这些特解的轨道都很怪异,其中有一种的轨道复杂多变,看上去就像是一大团乱糟糟的面条,不过三体从初始条件出发,经过这乱糟糟的“面条轨道”,依然能够回到初始状态。

这些奇怪的运动轨道在现实宇宙中能否找到呢?到目前为止,我们除了在太阳系中发现了拉格朗日所计算的三体类型外,其他类型都还是理论模型。科学家猜测,那些奇形怪状的三体系统只有在密集的球状星团中才可能出现,而那里的恒星太密集了,几乎没有产生行星的空间,更不要说诞生生命了。《三体》作为小说,设定一个拥有高超科技的三体文明是可以的,但没什么科学根据,小说中描述的三体行星上的景象在宇宙中是不可能出现的。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多