作者:薛坤军
编辑: 陈人和
- SSD理论总结(SSD: Single Shot MultiBox Detector) - 关键源码分析:https://github.com/balancap/SSD-Tensorflow
Model SSD模型采用VGG16作为基础网络结构(base network),在base network 之后添加了额外的网络结构,如下图所示: 
Multi-sacle feature maps for detection
在base network(VGG16的前5层)之后添加了额外的卷基层,具体利用astrous算法将fc6和fc7层转化为两个卷积层,再额外增加3个卷基层(Conv:1*1+Conv:3*3)和一个平均池化层(Avg Pooling,论文中是一个Conv:1*1+Conv:3*3,具有相同作用); 这里我们在网络的所有特征图上应用3*3卷积进行预测,来自较低层的预测有助于处理较小的物体。因为低层的feature map的感受野较小。这意味着可以通过使用与感受野大小相似的feature map来处理大小不同的对象,即达到多尺度特征图检测的目的; 关键代码解析:#部分初始化参数
class SSDNet(object): '''Implementation of the SSD VGG-based 300 network. The default features layers with 300x300 image input are: 多尺度feature map检测位置 conv4 ==> 38 x 38 conv7 ==> 19 x 19 conv8 ==> 10 x 10 conv9 ==> 5 x 5 conv10 ==> 3 x 3 conv11 ==> 1 x 1 The default image size used to train this network is 300x300. ''' default_params = SSDParams( img_shape=(300, 300),#输入图像尺寸 num_classes=21,#类别数量,20+1(背景) no_annotation_label=21, #多尺度feature map检测位置 feat_layers=['block4', 'block7', 'block8', 'block9', 'block10', 'block11'], #feature map尺寸 feat_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)], #最低层、最高层default box大小,可根据需要进行修改 anchor_size_bounds=[0.15, 0.90], #anchor_size_bounds=[0.20, 0.90],(原论文中的值) #default box大小 anchor_sizes=[(21., 45.), (45., 99.), (99., 153.), (153., 207.), (207., 261.), (261., 315.)], # anchor_sizes=[(30., 60.), # (60., 111.), # (111., 162.), # (162., 213.), # (213., 264.), # (264., 315.)], #default box的长宽比例 anchor_ratios=[[2, .5], [2, .5, 3, 1./3], [2, .5, 3, 1./3], [2, .5, 3, 1./3], [2, .5], [2, .5]], #default box中心位置间隔 anchor_steps=[8, 16, 32, 64, 100, 300], anchor_offset=0.5,#补偿阈值 #该特征图是否进行正则化,大于0正则化 normalizations=[20, -1, -1, -1, -1, -1], prior_scaling=[0.1, 0.1, 0.2, 0.2] ) #定义SSD网络结构 def ssd_net(input, num_classes=SSDNet.default_params.num_classes, feat_layers=SSDNet.default_params.feat_layers, anchor_sizes=SSDNet.default_params.anchor_sizes, anchor_ratios=SSDNet.default_params.anchor_ratios, normalizations=SSDNet.default_params.normalizations, is_training=True, dropout_keep_prob=0.5, prediction_fn=slim.softmax, reuse=None, scope='ssd_300_vgg'): '''SSD net definition.''' # End_points collect relevant activations for external use. #存储每层feature map的输出结果 end_points = {} with tf.variable_scope(scope, 'ssd_300_vgg', [inputs], reuse=reuse): # ========Original VGG-16 blocks======== net = slim.repeat(input, 2, slim.conv2d, 64, [3, 3], scope='conv1') end_points['block1'] = net net = slim.max_pool2d(net, [2, 2], scope='pool1', padding='SAME') # Block 2. net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') end_points['block2'] = net net = slim.max_pool2d(net, [2, 2], scope='pool2', padding='SAME') # Block 3. net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') end_points['block3'] = net net = slim.max_pool2d(net, [2, 2], scope='pool3', padding='SAME') # Block 4. net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') #第一个用于预测的feature map,shape为(batch_size, 38, 38, 512) end_points['block4'] = net net = slim.max_pool2d(net, [2, 2], scope='pool4', padding='SAME') # Block 5. net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') end_points['block5'] = net net = slim.max_pool2d(net, [3, 3], stride=1, scope='pool5', padding='SAME') # Additional SSD blocks. # Block 6: let's dilate the hell out of it! net = slim.conv2d(net, 1024, [3, 3], rate=6, scope='conv6') end_points['block6'] = net net = tf.layers.dropout(net, rate=dropout_keep_prob, training=is_training) # Block 7: 1x1 conv. Because the fuck. net = slim.conv2d(net, 1024, [1, 1], scope='conv7') #第二个用于预测的feature map,shape为(batch_size, 19, 19, 1024) end_points['block7'] = net net = tf.layers.dropout(net, rate=dropout_keep_prob, training=is_training) # Block 8/9/10/11: 1x1 and 3x3 convolutions stride 2 (except lasts) end_point = 'block8' with tf.variable_scope(end_point): net = slim.conv2d(net, 256, [1, 1], scope='conv1x1') net = custom_layers.pad2d(net, pad=(1, 1)) net = slim.conv2d(net, 512, [3, 3], stride=2, scope='conv3x3', padding='VALID') #第三个用于预测的feature map,shape为(batch_size, 10, 10, 512) end_points[end_point] = net end_point = 'block9' with tf.variable_scope(end_point): net = slim.conv2d(net, 128, [1, 1], scope='conv1x1') net = custom_layers.pad2d(net, pad=(1, 1)) net = slim.conv2d(net, 256, [3, 3], stride=2, scope='conv3x3', padding='VALID') #第四个用于预测的feature map,shape为(batch_size, 5, 5, 256) end_points[end_point] = net end_point = 'block10' with tf.variable_scope(end_point): net = slim.conv2d(net, 128, [1, 1], scope='conv1x1') net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID') #第五个用于预测的feature map,shape为(batch_size, 3, 3, 256) end_points[end_point] = net end_point = 'block11' with tf.variable_scope(end_point): net = slim.conv2d(net, 128, [1, 1], scope='conv1x1') net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID') #第六个用于预测的feature map,shape为(batch_size, 1, 1, 256) end_points[end_point] = net # Prediction and localisations layers. predictions = [] logits = [] localisations = [] for i, layer in enumerate(feat_layers): with tf.variable_scope(layer + '_box'): #预测bbox的位置(相对于default box的偏移)以及类别 p, l = ssd_multibox_layer(end_points[layer], num_classes, anchor_sizes[i], anchor_ratios[i], normalizations[i]) #softmax predictions.append(prediction_fn(p)) #类别概率 logits.append(p) #bbox相对于default box的偏移 localisations.append(l) return predictions, localisations, logits, end_points ssd_net.default_image_size = 300
测试使用的是tf-1.1.0版本,使用300*300的图片feature map的shape和预期不一样,因此在源码中做了改动,即在max_pool添加参数padding='SAME'。
Convolutional predictors for detection
每一个用于预测的特征层(base network之后的feature map),使用一系列 convolutional filters,产生一系列固定大小(即每个特征图预测的尺度是固定的)的 predictions。对于一个 m×n,具有 p 通道的feature map,使用的convolutional filters 是 3×3 的 kernels。预测default box的类别和偏移位置; YOLO 则是用一个全连接层来代替这里的卷积层,全连接层导致输入大小必须固定; 关键代码分析:
##在特征图上进行预测(偏移位置,类别概率) ''' inpouts:['block4', 'block7', 'block8', 'block9', 'block10', 'block11'] num_classes:21 sizes:[(21.,45.),(45.,99.),(99.,153.), (153.,207.),(207.,261.),(261.,315.)] ratios: [[2, .5],[2, .5, 3, 1./3],[2, .5, 3, 1./3],[2, .5, 3, 1./3],[2, .5],[2,.5]] 参数一一对应 ''' def ssd_multibox_layer(inputs, num_classes, sizes, ratios=[1], normalization=-1, bn_normalization=False): '''Construct a multibox layer, return a class and localization predictions. ''' net = inputs #正则化 if normalization > 0: net = custom_layers.l2_normalization(net, scaling=True) # Number of anchors. #此feature map每个位置对应的default box个数 #len(size)表示长宽比例为1的的个数 #len(ratios)表示其它长宽比例 num_anchors = len(sizes) + len(ratios) # Location. #位置 num_loc_pred = num_anchors * 4 #卷积预测器,为每个bbox预测位置 '''输出: (batch_size, 38, 38,num_loc_pred) (batch_size, 19, 19,num_loc_pred) (batch_size, 10, 10,num_loc_pred) (batch_size, 5, 5,num_loc_pred) (batch_size, 3, 3,num_loc_pred) (batch_size, 1, 1,num_loc_pred) ''' loc_pred = slim.conv2d(net, num_loc_pred, [3, 3], activation_fn=None, scope='conv_loc') loc_pred = custom_layers.channel_to_last(loc_pred) loc_pred = tf.reshape(loc_pred, tensor_shape(loc_pred, 4)[:-1]+[num_anchors, 4]) # Class prediction. #卷积预测器,为每个bbox预测类别 num_cls_pred = num_anchors * num_classes cls_pred = slim.conv2d(net, num_cls_pred, [3, 3], activation_fn=None, scope='conv_cls') cls_pred = custom_layers.channel_to_last(cls_pred) cls_pred = tf.reshape(cls_pred, tensor_shape(cls_pred, 4)[:-1]+[num_anchors, num_classes]) return cls_pred, loc_pred
Default boxes and aspect ratios(长宽比)
#为特征每个feature map生成固定的default box def ssd_anchor_one_layer(img_shape, feat_shape, sizes, ratios, step, offset=0.5, dtype=np.float32): '''Computer SSD default anchor boxes for one feature layer. Determine the relative position grid of the centers, and the relative width and height. Arguments: feat_shape: Feature shape, used for computing relative position grids; size: Absolute reference sizes; ratios: Ratios to use on these features; img_shape: Image shape, used for computing height, width relatively to the former; offset: Grid offset. Return: y, x, h, w: Relative x and y grids, and height and width. ''' # Compute the position grid: simple way. # y, x = np.mgrid[0:feat_shape[0], 0:feat_shape[1]] # y = (y.astype(dtype) + offset) / feat_shape[0] # x = (x.astype(dtype) + offset) / feat_shape[1] # Weird SSD-Caffe computation using steps values... #以(38*38)的feature map为例生成default box #理解为feature map对应的y轴坐标,x轴坐标 ''' y的shape(38,38),值为: np.array([[0,0,0,...,0,0,0], [1,1,1,...,1,1,1], ...... [37,37,37,...,37,37,37]]) x的shape(38,38),值为: np.array([[0,1,2,...,35,36,37], [0,1,2,...,35,36,37], ...... [0,1,2,...,35,36,37]]) ''' y, x = np.mgrid[0:feat_shape[0], 0:feat_shape[1]] #将feature map的点对应到原始图像上并归一化[0-1] #y = (y + 0.5) * 8/300 #x = (x + 0.5) * 8/300 #x,y为default box在原始图片中的中心位置,并归一化[0-1] y = (y.astype(dtype) + offset) * step / img_shape[0] x = (x.astype(dtype) + offset) * step / img_shape[1] # Expand dims to support easy broadcasting. #扩展维度,shape为(38,38,1) y = np.expand_dims(y, axis=-1) x = np.expand_dims(x, axis=-1) # Compute relative height and width. # Tries to follow the original implementation of SSD for the order. #anchors的数量 #feature map每个点对应的default box 的数量 num_anchors = len(sizes) + len(ratios) #default box 的高和宽 h = np.zeros((num_anchors, ), dtype=dtype) w = np.zeros((num_anchors, ), dtype=dtype) # Add first anchor boxes with ratio=1. # #长宽比例为1的default box,高和宽都为21/300 h[0] = sizes[0] / img_shape[0] w[0] = sizes[0] / img_shape[1] di = 1 #长宽比例为1的default box额外添加一个尺寸为sqrt(Sk*Sk+1)的default box if len(sizes) > 1: #宽高都为sqrt(21*45) h[1] = math.sqrt(sizes[0] * sizes[1]) / img_shape[0] w[1] = math.sqrt(sizes[0] * sizes[1]) / img_shape[1] di += 1 #剩余长宽比的default box for i, r in enumerate(ratios): h[i+di] = sizes[0] / img_shape[0] / math.sqrt(r) w[i+di] = sizes[0] / img_shape[1] * math.sqrt(r) #返回default box的中心位置以及宽和高 #y,x的shape为(38,38,1) #h,w的shape为(4,) return y, x, h, w def ssd_anchors_all_layers(img_shape,#原始图像的shape layers_shape,#特征图shape anchor_sizes,#default box尺寸 anchor_ratios,#长宽比例 anchor_steps, offset=0.5, dtype=np.float32): '''Compute anchor boxes for all feature layers.''' ''' params: img_shape: (300,300) layers_shape: [(38,38),(19,19),(10,10),(5,5),(3,3),(1,1)] 21,45,99,153,207,261 anchor_sizes: [(21,45),(45,99),(99,153),(153,207),(207,261),(261,315)] anchor_ratios:[[2,.5],[2,.5,3,1./3],[2,.5,3,1./3],[2,.5,3,1./3],[2,.5],[2,.5]] anchor_steps: [8,16,32,64,100,300] offset: 0.5 ''' layers_anchors = [] #enumerate,python的内置函数返回索引、内容 ''' 即: 0,(38,38) 1,(19,19) 2,(10,10) 3,(5,5) 4,(3,3) 5,(1,1) ''' for i, s in enumerate(layers_shape): anchor_bboxes = ssd_anchor_one_layer(img_shape, s, anchor_sizes[i], anchor_ratios[i], anchor_steps[i], offset=offset, dtype=dtype) layers_anchors.append(anchor_bboxes) return layers_anchors
训练 1. 生成default box  
2. 生成训练数据
#gt编码函数 #labels:gt的类别 #bboxes:gt的位置 #anchors:default box的位置 #num_class:类别数量 #no_annotation_label:21 #ignore_threshold=0.5,阈值 #prior_scaling=[0.1, 0.1, 0.2, 0.2],缩放 def tf_ssd_bboxes_encode(labels, bboxes, anchors, num_classes, no_annotation_label, ignore_threshold=0.5, prior_scaling=[0.1, 0.1, 0.2, 0.2], dtype=tf.float32, scope='ssd_bboxes_encode'): '''Encode groundtruth labels and bounding boxes using SSD net anchors. Encoding boxes for all feature layers. Arguments: labels: 1D Tensor(int64) containing groundtruth labels; bboxes: Nx4 Tensor(float) with bboxes relative coordinates; anchors: List of Numpy array with layer anchors; matching_threshold: Threshold for positive match with groundtruth bboxes; prior_scaling: Scaling of encoded coordinates. Return: (target_labels, target_localizations, target_scores): Each element is a list of target Tensors. ''' with tf.name_scope(scope): target_labels = [] target_localizations = [] target_scores = [] for i, anchors_layer in enumerate(anchors): with tf.name_scope('bboxes_encode_block_%i' % i): #处理每个尺寸的default box(对应一层的feature map),生成训练数据 t_labels, t_loc, t_scores = \ tf_ssd_bboxes_encode_layer(labels, bboxes, anchors_layer, num_classes, no_annotation_label, ignore_threshold, prior_scaling, dtype) target_labels.append(t_labels) target_localizations.append(t_loc) target_scores.append(t_scores) return target_labels, target_localizations, target_scores
处理每个尺寸的default box(对应一层的feature map),生成训练数据,关键代码解析,以shape为(38,38)feature map为例:
本代码块中对于每一个anchor和所有的gt计算重叠度,anchor的类别为重叠度最高的gt的类别,偏移位置为相对于重叠度最高的gt的偏移位置; 给定输入图像以及每个物体的 ground truth,首先找到每个gt对应的default box中重叠度最大的作为(与该ground true box相关的匹配)正样本。然后,在剩下的default box中找到那些与任意一个ground truth box 的 IOU 大于 0.5的default box作为(与该ground true box相关的匹配)正样本。剩余的default box 作为负例样本; 一个anchor对应一个gt,而一个gt可能对应多个anchor;
#labels:gt的类别 #bboxes:gt的位置 #anchors_layer:特定feature map的default box的位置 #num_class:类别数量 #no_annotation_label:21 #ignore_threshold=0.5,阈值 #prior_scaling=[0.1, 0.1, 0.2, 0.2],缩放 def tf_ssd_bboxes_encode_layer(labels, bboxes, anchors_layer, num_classes, no_annotation_label, ignore_threshold=0.5, prior_scaling=[0.1, 0.1, 0.2, 0.2], dtype=tf.float32): '''Encode groundtruth labels and bounding boxes using SSD anchors from one layer. Arguments: labels: 1D Tensor(int64) containing groundtruth labels; bboxes: Nx4 Tensor(float) with bboxes relative coordinates; anchors_layer: Numpy array with layer anchors; matching_threshold: Threshold for positive match with groundtruth bboxes; prior_scaling: Scaling of encoded coordinates. Return: (target_labels, target_localizations, target_scores): Target Tensors. ''' # Anchors coordinates and volume. #anchors的中心坐标,以及宽高 #shape为(38,38,1),(38,38,1),(4,),(4,) yref, xref, href, wref = anchors_layer ymin = yref - href / 2.#anchor的下边界,(38,38,4) xmin = xref - wref / 2.#anchor的左边界,(38,38,4) ymax = yref + href / 2.#anchor的上边界,(38,38,4) xmax = xref + wref / 2.#anchor的右边界,(38,38,4) vol_anchors = (xmax - xmin) * (ymax - ymin)#anchor的面积,(38,38,4) # Initialize tensors... #(38,38,4) shape = (yref.shape[0], yref.shape[1], href.size) feat_labels = tf.zeros(shape, dtype=tf.int64) feat_scores = tf.zeros(shape, dtype=dtype) feat_ymin = tf.zeros(shape, dtype=dtype) feat_xmin = tf.zeros(shape, dtype=dtype) feat_ymax = tf.ones(shape, dtype=dtype) feat_xmax = tf.ones(shape, dtype=dtype) #计算jaccard重合度 #box存储的是gt的四个边界位置,并且都进行了归一化 def jaccard_with_anchors(bbox): '''Compute jaccard score between a box and the anchors. ''' #获取gt和anchors重合的部分 int_ymin = tf.maximum(ymin, bbox[0]) int_xmin = tf.maximum(xmin, bbox[1]) int_ymax = tf.minimum(ymax, bbox[2]) int_xmax = tf.minimum(xmax, bbox[3]) h = tf.maximum(int_ymax - int_ymin, 0.) w = tf.maximum(int_xmax - int_xmin, 0.) # Volumes. inter_vol = h * w#计算重叠部分面积 union_vol = vol_anchors - inter_vol \ + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) jaccard = tf.div(inter_vol, union_vol) return jaccard#返回重合度 #计算重叠部分面积占anchor面积的比例 def intersection_with_anchors(bbox): '''Compute intersection between score a box and the anchors. ''' int_ymin = tf.maximum(ymin, bbox[0]) int_xmin = tf.maximum(xmin, bbox[1]) int_ymax = tf.minimum(ymax, bbox[2]) int_xmax = tf.minimum(xmax, bbox[3]) h = tf.maximum(int_ymax - int_ymin, 0.) w = tf.maximum(int_xmax - int_xmin, 0.) inter_vol = h * w scores = tf.div(inter_vol, vol_anchors) return scores #tf.while_loop的条件 def condition(i, feat_labels, feat_scores, feat_ymin, feat_xmin, feat_ymax, feat_xmax): '''Condition: check label index. ''' #返回I<> r = tf.less(i, tf.shape(labels)) return r[0] #tf.while_loop的主体 def body(i, feat_labels, feat_scores, feat_ymin, feat_xmin, feat_ymax, feat_xmax): '''Body: update feature labels, scores and bboxes. Follow the original SSD paper for that purpose: - assign values when jaccard > 0.5; - only update if beat the score of other bboxes. ''' # Jaccard score. #第i个gt的类别和位置 label = labels[i] bbox = bboxes[i] #计算gt和每一个anchor的重合度 jaccard = jaccard_with_an4chors(bbox) # Mask: check threshold + scores + no annotations + num_classes. #比较两个值的大小来输出对错,大于输出true,shape(38,38,4) #feat_scores存储的是anchor和gt重叠度最高的值 mask = tf.greater(jaccard, feat_scores) #mask = tf.logical_and(mask,tf.greater(jaccard,matching_threshold)) #逻辑与 mask = tf.logical_and(mask, feat_scores > -0.5) mask = tf.logical_and(mask, label <> imask = tf.cast(mask, tf.int64) fmask = tf.cast(mask, dtype) # Update values using mask. #根据imask更新类别,和位置 #imask表示本轮anchor和gt重合度之前gt的重合度,1-imask保留之前的结果 #更新anchor的类别标签 feat_labels = imask * label + (1 - imask) * feat_labels #jaccard返回true对应的值,feat_scores返回false对应的值 #更新anchor与gt的重合度,为每个anchor保留重合度最大值 feat_scores = tf.where(mask, jaccard, feat_scores) #更新anchor对应的gt(具有最大重合度) feat_ymin = fmask * bbox[0] + (1 - fmask) * feat_ymin feat_xmin = fmask * bbox[1] + (1 - fmask) * feat_xmin feat_ymax = fmask * bbox[2] + (1 - fmask) * feat_ymax feat_xmax = fmask * bbox[3] + (1 - fmask) * feat_xmax # Check no annotation label: ignore these anchors... # interscts = intersection_with_anchors(bbox) # mask = tf.logical_and(interscts > ignore_threshold, # label == no_annotation_label) # # Replace scores by -1. # feat_scores = tf.where(mask, -tf.cast(mask, dtype), feat_scores) return [i+1, feat_labels, feat_scores, feat_ymin, feat_xmin, feat_ymax, feat_xmax] # Main loop definition. i = 0 [i, feat_labels, feat_scores, feat_ymin, feat_xmin, feat_ymax, feat_xmax] = tf.while_loop(condition, body, [i, feat_labels, feat_scores, feat_ymin, feat_xmin, feat_ymax, feat_xmax]) # Transform to center / size. #计算anchor对应的gt的中心位置以及宽和高 feat_cy = (feat_ymax + feat_ymin) / 2. feat_cx = (feat_xmax + feat_xmin) / 2. feat_h = feat_ymax - feat_ymin feat_w = feat_xmax - feat_xmin # Encode features. #计算anchor与对应的gt的偏移位置 feat_cy = (feat_cy - yref) / href / prior_scaling[0] feat_cx = (feat_cx - xref) / wref / prior_scaling[1] feat_h = tf.log(feat_h / href) / prior_scaling[2] feat_w = tf.log(feat_w / wref) / prior_scaling[3] # Use SSD ordering: x / y / w / h instead of ours. feat_localizations = tf.stack([feat_cx, feat_cy, feat_w, feat_h], axis=-1) #返回每个anchor的类别标签,以及anchor和对应gt的偏移,anchor与对应gt的重合度 return feat_labels, feat_localizations, feat_scores
3.损失函数
SSD损失函数分为两部分:
#SSD损失函数定义 #logits:预测的类别 #localisations:预测的偏移位置 #gclasses:default box相对于gt的类别 #glocalisations:default box相对于gt的偏移位置 #gscores:default box和gt的重叠度 def ssd_losses(logits, localisations, gclasses, glocalisations, gscores, match_threshold=0.5, negative_ratio=3., alpha=1., label_smoothing=0., device='/cpu:0', scope=None): with tf.name_scope(scope, 'ssd_losses'): lshape = tfe.get_shape(logits[0], 5) #类别数量 num_classes = lshape[-1] batch_size = lshape[0] # Flatten out all vectors! flogits = [] fgclasses = [] fgscores = [] flocalisations = [] fglocalisations = [] #处理所有尺寸feature map的预测结果 #(38,38),(19,19),(10,10),(5,5),(3,3),(1,1) for i in range(len(logits)): #预测的类别(38*38*4, 21) flogits.append(tf.reshape(logits[i], [-1, num_classes])) #真实类别(38*38*4) fgclasses.append(tf.reshape(gclasses[i], [-1])) #重叠度(38*38*4) fgscores.append(tf.reshape(gscores[i], [-1])) #预测偏移位置,(38*38*4, 4) flocalisations.append(tf.reshape(localisations[i], [-1, 4])) #真实偏移位置,(38*38*4, 4) fglocalisations.append(tf.reshape(glocalisations[i], [-1, 4])) # And concat the crap! logits = tf.concat(flogits, axis=0) gclasses = tf.concat(fgclasses, axis=0) gscores = tf.concat(fgscores, axis=0) localisations = tf.concat(flocalisations, axis=0) glocalisations = tf.concat(fglocalisations, axis=0) dtype = logits.dtype # Compute positive matching mask... #获取重叠度>0.5的default box个数,即损失函数中的N,正例样本位置 pmask = gscores > match_threshold fpmask = tf.cast(pmask, dtype) n_positives = tf.reduce_sum(fpmask) # Hard negative mining... no_classes = tf.cast(pmask, tf.int32) #将输出类别对应的softmax predictions = slim.softmax(logits) #逻辑与,获得负类样本的位置 nmask = tf.logical_and(tf.logical_not(pmask), gscores > -0.5) fnmask = tf.cast(nmask, dtype) #获得负例样本对应的概率 nvalues = tf.where(nmask, predictions[:, 0], 1. - fnmask) nvalues_flat = tf.reshape(nvalues, [-1]) # Number of negative entries to select. #负例样本数目,保证正负样本数目为1:3 max_neg_entries = tf.cast(tf.reduce_sum(fnmask), tf.int32) n_neg = tf.cast(negative_ratio * n_positives, tf.int32)+batch_size n_neg = tf.minimum(n_neg, max_neg_entries) val, idxes = tf.nn.top_k(-nvalues_flat, k=n_neg) max_hard_pred = -val[-1] # Final negative mask. nmask = tf.logical_and(nmask, nvalues <> fnmask = tf.cast(nmask, dtype) # Add cross-entropy loss. #正样本概率损失函数 with tf.name_scope('cross_entropy_pos'): loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=gclasses) loss = tf.div(tf.reduce_sum(loss * fpmask), batch_size, name='value') tf.losses.add_loss(loss) #负样本概率损失函数 with tf.name_scope('cross_entropy_neg'): loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=no_classes) loss = tf.div(tf.reduce_sum(loss * fnmask), batch_size, name='value') tf.losses.add_loss(loss) # Add localization loss: smooth L1, L2, ... #位置损失函数 with tf.name_scope('localization'): # Weights Tensor: positive mask + random negative. weights = tf.expand_dims(alpha * fpmask, axis=-1) loss = custom_layers.abs_smooth(localisations - glocalisations) loss = tf.div(tf.reduce_sum(loss * weights), batch_size, name='value') tf.losses.add_loss(loss)
4.Hard Negative Mining 绝大多数的default box都是负例样本,导致正负样本不平衡,训练时采用Hard Negative Mining策略(使正负样本比例为1:3)来平衡正负样本比例。
END
|