若將D畫成一曲線,則成《四元玉鑒》所言之“窊田”及“畹田”。 筆者一向認為《四元玉鑒》所言之“窊田積”及“畹田積”即現代數學以弧 度求扇形面積,若扇形之圓心角小於π弧度,則成“畹田”,若圓心角大於π 弧度,則成“窊田”,畹田與窊田皆以圓滑之曲線連接。 以下圖左為“扇形窊田”,圖右為“扇形畹田”。O為圓心,OA、OB為兩 半徑,其和為D,若AOB改成曲線,則正式成為窊田與畹田。若將AOB改 成曲線,其曲率要適當調節,使其所圍成之面積與扇形ACB或ADB相等,但 此曲線之長未必為D,故以扇形表達法較準確。
若徑為D=16步,圓周為16×3=48﹝步﹞,上周36步﹝指大弧 ACB﹞,見第二題。 11 則窊田面積=窊徑×上周=×16×36=144﹝平方步﹞。 44 又下周長48–36=12﹝步﹞,則: 11 畹田面積=畹徑×下周=×16×12=48﹝平方步﹞。 44 兩面積和144+48=192﹝平方步﹞。 11 22 圓面積=×D×π=×16×3=192﹝平方步﹞。 44 可見窊田面積+畹田面積=圓面積。 -9- |
|