分享

甲状腺功能减退症(Hypothyroidism)的影像学表现

 zskyteacher 2018-11-17

甲状腺功能减退症Hypothyroidism:简称甲减,是由于甲状腺激素的合成,分泌或生物效应不足而引起的一种综合征。病因较复杂,以原发性者多见,其次为垂体性者,其他均属少见。患者可能会出现四肢无力、内分泌功能减退、低血压、眩晕、肌性肌无力、体型异常、呼吸异常等症状。

甲状腺功能减退症可能是先天性的,这会导致严重的骨骼畸形和发育迟缓,也可能后天获得,这将导致相对温和的骨骼异常。获得性甲状腺功能减退可能发生在手术后或治疗后(放射性碘治疗)或可能是由于腺性萎缩,急性或慢性(桥本)甲状腺炎,浸润性疾病如淀粉样变性或淋巴瘤,某些药物治疗,碘缺乏症或垂体紊乱导致甲状腺激素激素缺乏。在儿童患者中,骨骼发育迟缓,往往伴有缺血性、不规则或碎片性远端股骨和近端胫骨骨骺(图1),类似于多发性骨骺发育不良。 牙齿发育也可能延迟。

图1a。12岁的男孩,先天性甲状腺功能减退症,身材矮小,发育迟缓。(a)右侧腕关节X线片显示只有头状骨(箭头),钩状骨(箭头)和桡骨(圆)的骨化中心。骨龄估计为1.5年。

图1b。(b)腰椎横断面显示出发育不全的椎体。 L1具有子弹状椎体(箭头)。

图1c。(c)骨盆前后位置X线照片显示髋关节髋臼变浅(实心箭头),边缘不光整。 股骨头骨骺(虚线箭头)小而分散。

图1d。(d)右膝的前后X线照片显示小而不规则的远端股骨和近端胫骨骨骺(箭头)。

图1e。(e)经过2年甲状腺激素替代治疗后获得的左手X线片显示所有腕骨骨化中心的间歇性骨化。 骨龄仍然延迟,但进展到约9年(患者年龄,14岁)。

图1f。(f)2年甲状腺激素替代治疗后,获得的右膝前后X光片显示骨骺的成熟,但胫骨和股骨可见残留不规则的改变(箭头)。 (图片由Ok-Hwa Kim,MD,Ajou大学,韩国首尔)提供。





Woltman征是指深腱反射的延迟松弛阶段,是甲状腺功能减退症的神经系统表现。

一名53岁的男性前来内分泌科诊所,有6个月的进行性全身性疲劳和对感冒的敏感性增加。在发表时,身体检查显示弥漫性扩大的甲状腺的存在和踝关节反射的延迟放松实验室研究显示,血清促甲状腺素水平为200 mIU / L(参考范围,0.35至5.50),血清游离甲状腺素水平为0.05 ng / dl(1 pmol / L)(参考范围,每分升0.89至1.76 ng [每升11至23 pmol])。Woltman征是指深腱反射的延迟松弛阶段,是甲状腺功能减退症的神经系统表现。这种延迟的放松也可能与怀孕,神经性厌食症,糖尿病和高龄有关。患者接受甲状腺激素替代治疗,左旋甲状腺素治疗原发性甲状腺功能减退症。一个月后,血清游离甲状腺素水平增加到每分升1.23 ng(每升16 pmol),血清促甲状腺激素水平为每升20.5 mIU,)。在随后的随访中,促甲状腺素水平归一化至每升3.2mIU。





资料来源:

  • 1. Skowrońska-Jóźwiak E, Lorenc RS. Metabolic bone disease in children: etiology and treatment options. Treat Endocrinol 2006;5(5):297–318.Crossref, Medline, Google Scholar

  • 2. Guglielmi G, Muscarella S, Bazzocchi A. Integrated imaging approach to osteoporosis: state-of-the-art review and update. RadioGraphics 2011;31(5):1343–1364.Link, Google Scholar

  • 3. O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ. The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 1996;11(7):1010–1018.Crossref, Medline, Google Scholar

  • 4. Looker AC, Orwoll ES, Johnston CC Jr et al. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 1997;12(11):1761–1768.Crossref, Medline, Google Scholar

  • 5. Kanis Jon behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health care level: technical report. Sheffield, United Kingdom: World Health Organization Collaborating Centre for Metabolic Bones Diseases, University of Sheffield, 2007. University of Sheffield website. https://www./FRAX/pdfs/WHO_Technical_Report.pdf. Accessed November 12, 2015.Google Scholar

  • 6. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006;17(12):1726–1733.Crossref, Medline, Google Scholar

  • 7. Kanis JA, Johnell O, Oden A et al. Long-term risk of osteoporotic fracture in Malmö. Osteoporos Int 2000;11(8):669–674.Crossref, Medline, Google Scholar

  • 8. Melton LJ 3rd, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL. Bone density and fracture risk in men. J Bone Miner Res 1998;13(12):1915–1923.Crossref, Medline, Google Scholar

  • 9. Melton LJ 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective: how many women have osteoporosis? J Bone Miner Res 1992;7(9):1005–1010.Crossref, Medline, Google Scholar

  • 10. Riggs BL, Melton LJ 3rd. Evidence for two distinct syndromes of involutional osteoporosis. Am J Med 1983;75(6):899–901.Crossref, Medline, Google Scholar

  • 11. Kanis JA, Glüer CC. An update on the diagnosis and assessment of osteoporosis with densitometry: Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int2000;11(3):192–202.Crossref, Medline, Google Scholar

  • 12. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group. World Health Organ Tech Rep Ser 1994;843:1–129.Medline, Google Scholar

  • 13. Zebaze RMD, Ghasem-Zadeh A, Bohte A et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet2010;375(9727):1729–1736.Crossref, Medline, Google Scholar

  • 14. Albright F. Osteoporosis. Ann Intern Med 1947;27(6):861–882.Crossref, Medline, Google Scholar

  • 15. Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology 2012;263(1):3–17.Link, Google Scholar

  • 16. Guglielmi G, Muscarella S, Leone A, Peh WC. Imaging of metabolic bone diseases. Radiol Clin North Am2008;46(4):735–754, vi.Crossref, Medline, Google Scholar

  • 17. Sommer OJ, Kladosek A, Weiler V, Czembirek H, Boeck M, Stiskal M. Rheumatoid arthritis: a practical guide to state-of-the-art imaging, image interpretation, and clinical implications. RadioGraphics 2005;25(2):381–398.Link, Google Scholar

  • 18. Einhorn TA. Bone strength: the bottom line. Calcif Tissue Int 1992;51(5):333–339.Crossref, Medline, Google Scholar

  • 19. Townsend PR, Rose RM, Radin EL. Buckling studies of single human trabeculae. J Biomech 1975;8(3-4):199–201.Crossref, Medline, Google Scholar

  • 20. Mosekilde L, Viidik A, Mosekilde L. Correlation between the compressive strength of iliac and vertebral trabecular bone in normal individuals. Bone1985;6(5):291–295.Crossref, Medline, Google Scholar

  • 21. Guise TA, Mundy GR. Cancer and bone. Endocr Rev 1998;19(1):18–54.Crossref, Medline, Google Scholar

  • 22. Nawanthe S, Nguyen BP, Barzanian N, Akhlaghpour H, Bouxsein ML, Keaveny TM. Cortical and trabecular load sharing in the human femoral neck. J Biomech2015;48(5):816–822.Crossref, Medline, Google Scholar

  • 23. Pitt MJ. Rickets and osteomalacia. In: Resnick D, ed. Diagnosis of bone and joint disorders. 4th ed. Philadelphia, Pa: Saunders, 2002; 1901–1946.Google Scholar

  • 24. Calder AD. Radiology of osteogenesis imperfecta, rickets and other bony fragility states. Endocr Dev 2015;28:56–71.Medline, Google Scholar

  • 25. Tiosano D, Hochberg Z. Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 2009;27(4):392–401.Crossref, Medline, Google Scholar

  • 26. Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci U S A 2005;102(27):9637–9642.Crossref, Medline, Google Scholar

  • 27. Whyte MP, Zhang F, Wenkert D et al. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 2015;75:229–239.Crossref, Medline, Google Scholar

  • 28. Whyte MP, Greenberg CR, Salman NJet al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 2012;366(10):904–913.Crossref, Medline, Google Scholar

  • 29. Khan A, Bilezikian J. Primary hyperparathyroidism: pathophysiology and impact on bone. CMAJ2000;163(2):184–187.Medline, Google Scholar

  • 30. Murphey MD, Sartoris DJ, Quale JL, Pathria MN, Martin NL. Musculoskeletal manifestations of chronic renal insufficiency. RadioGraphics1993;13(2):357–379.Link, Google Scholar

  • 31. Resnick D, Deftos LJ, Parthemore JG. Renal osteodystrophy: magnification radiography of target sites of absorption. AJR Am J Roentgenol 1981;136(4):711–714.Crossref, Medline, Google Scholar

  • 32. Resnick D, Niwayama G. Subchondral resorption of bone in renal osteodystrophy. Radiology1976;118(2):315–321.Link, Google Scholar

  • 33. Brown TW, Genant HK, Hattner RS, Orloff S, Potter DE. Multiple brown tumors in a patient with chronic renal failure and secondary hyperparathyroidism. AJR Am J Roentgenol 1977;128(1):131–134.Crossref, Medline, Google Scholar

  • 34. Griffiths HJ, Ennis JT, Bailey G. Skeletal changes following renal transplantation. Radiology 1974;113(3):621–626.Link, Google Scholar

  • 35. Mataliotakis G, Lykissas MG, Mavrodontidis AN, Kontogeorgakos VA, Beris AE. Femoral neck fractures secondary to renal osteodystrophy: literature review and treatment algorithm. J Musculoskelet Neuronal Interact2009;9(3):130–137.Medline, Google Scholar

  • 36. Resnick D. The sclerotic vertebral body. JAMA 1983;249(13):1761–1763.Crossref, Medline, Google Scholar

  • 37. Kuzela DC, Huffer WE, Conger JD, Winter SD, Hammond WS. Soft tissue calcification in chronic dialysis patients. Am J Pathol 1977;86(2):403–424.Medline, Google Scholar

  • 38. Naidich JB, Karmel MI, Mossey RT, Bluestone PA, Stein HL. Osteoarthropathy of the hand and wrist in patients undergoing long-term hemodialysis. Radiology 1987;164(1):205–209.Link, Google Scholar

  • 39. Naidich JB, Mossey RT, McHeffey-Atkinson B et al. Spondyloarthropathy from long-term hemodialysis. Radiology1988;167(3):761–764.Link, Google Scholar

  • 40. Casey TT, Stone WJ, DiRaimondo CR et al. Tumoral amyloidosis of bone of beta 2-microglobulin origin in association with long-term hemodialysis: a new type of amyloid disease. Hum Pathol1986;17(7):731–738.Crossref, Medline, Google Scholar

  • 41. Bardin T, Kuntz D, Zingraff J, Voisin MC, Zelmar A, Lansaman J. Synovial amyloidosis in patients undergoing long-term hemodialysis. Arthritis Rheum1985;28(9):1052–1058.Crossref, Medline, Google Scholar

  • 42. Bardin T, Lebail-Darné JL, Zingraff J et al. Dialysis arthropathy: outcome after renal transplantation. Am J Med1995;99(3):243–248.Crossref, Medline, Google Scholar

  • 43. Gielen JL, van Holsbeeck MT, Hauglustaine D et al. Growing bone cysts in long-term hemodialysis. Skeletal Radiol 1990;19(1):43–49.Crossref, Medline, Google Scholar

  • 44. Mitchell DM, Regan S, Cooley MR et al. Long-term follow-up of patients with hypoparathyroidism. J Clin Endocrinol Metab 2012;97(12):4507–4514.Crossref, Medline, Google Scholar

  • 45. Shoback D. Clinical practice: hypoparathyroidism. N Engl J Med2008;359(4):391–403.Crossref, Medline, Google Scholar

  • 46. Moley JF, Skinner M, Gillanders WE et al. Management of the parathyroid glands during preventive thyroidectomy in patients with multiple endocrine neoplasia type 2. Ann Surg2015;262(4):641–646.Crossref, Medline, Google Scholar

  • 47. Resnick D. Parathyroid disorders and renal osteodystrophy. In: Resnick D, ed. Diagnosis of bone and joint disorders. 4th ed. Philadelphia, Pa: Saunders, 2002; 2043–2111.Google Scholar

  • 48. Steinberg H, Waldron BR. Idiopathic hypoparathyroidism: an analysis of fifty-two cases, including the report of a new case. Medicine (Baltimore)1952;31(2):133–154.Crossref, Medline, Google Scholar

  • 49. Taybi H, Keele D. Hypoparathyroidism: a review of the literature and report of two cases in sisters, one with steatorrhea and intestinal pseudo-obstruction. Am J Roentgenol Radium Ther Nucl Med1962;88:432–442.Medline, Google Scholar

  • 50. Strom L, Winberg J. Idiopathic hypoparathyroidism. Acta Paediatr1954;43(6):574–581.Crossref, Medline, Google Scholar

  • 51. Bronsky D, Kushner DS, Dubin A, Snapper I. Idiopathic hypoparathyroidism and pseudohypoparathyroidism: case reports and review of the literature. Medicine (Baltimore) 1958;37(4):317–352.Crossref, Medline, Google Scholar

  • 52. Resnick D. Thyroid disorders. In: Resnick D, ed. Diagnosis of bone and joint disorders. 4th ed. Philadelphia, Pa: Saunders, 2002; 2026–2042.Google Scholar

  • 53. Hernandez RJ, Poznanski AW, Hopwood NJ. Size and skeletal maturation of the hand in children with hypothyroidism and hypopituitarism. AJR Am J Roentgenol 1979;133(3):405–408.Crossref, Medline, Google Scholar

  • 54. Newland CJ, Swift PG, Lamont AC. Congenital hypothyroidism: correlation between radiographic appearances of the knee epiphyses and biochemical data. Postgrad Med J 1991;67(788):553–556.Crossref, Medline, Google Scholar

  • 55. Resnick D. Scurvy. In: Diagnosis of bone and joint disorders. 4th ed. Philadelphia, Pa: Saunders, 2002; 3459–3463.Google Scholar

  • 56. Noordin S, Baloch N, Salat MS, Rashid Memon A, Ahmad T. Skeletal manifestations of scurvy: a case report from Dubai. Case Rep Orthop2012;2012:624628. doi: 10.1155/2012/624628. Published online September 3, 2012.Medline, Google Scholar

  • 57. Polat AV, Bekci T, Say F, Bolukbas E, Selcuk MB. Osteoskeletal manifestations of scurvy: MRI and ultrasound findings. Skeletal Radiol 2015;44(8):1161–1164.Crossref, Medline, Google Scholar


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多