目录 正文 前言
在Hadoop中,排序是MapReduce的灵魂,MapTask和ReduceTask均会对数据按Key排序,这个操作是MR框架的默认行为,不管你的业务逻辑上是否需要这一操作。
技术点
MapReduce框架中,用到的排序主要有两种:快速排序和基于堆实现的优先级队列(PriorityQueue)。
Mapper阶段
从map输出到环形缓冲区的数据会被排序(这是MR框架中改良的快速排序),这个排序涉及partition和key,当缓冲区容量占用80%,会spill数据到磁盘,生成IFile文件,Map结束后,会将IFile文件排序合并成一个大文件(基于堆实现的优先级队列),以供不同的reduce来拉取相应的数据。
Reducer阶段
从Mapper端取回的数据已是部分有序,Reduce Task只需进行一次归并排序即可保证数据整体有序。为了提高效率,Hadoop将sort阶段和reduce阶段并行化,在sort阶段,Reduce Task为内存和磁盘中的文件建立了小顶堆,保存了指向该小顶堆根节点的迭代器,并不断的移动迭代器,以将key相同的数据顺次交给reduce()函数处理,期间移动迭代器的过程实际上就是不断调整小顶堆的过程(建堆→取堆顶元素→重新建堆→取堆顶元素...),这样,sort和reduce可以并行进行。
分组Top N分析
在数据处理中,经常会碰到这样一个场景,对表数据按照某一字段分组,然后找出各自组内最大的几条记录情形。针对这种分组Top N问题,我们利用Hive、MapReduce等多种工具实现一下。
场景模拟

computer,huangxiaoming,85,86,41,75,93,42,85
computer,xuzheng,54,52,86,91,42
computer,huangbo,85,42,96,38
english,zhaobenshan,54,52,86,91,42,85,75
english,liuyifei,85,41,75,21,85,96,14
algorithm,liuyifei,75,85,62,48,54,96,15
computer,huangjiaju,85,75,86,85,85
english,liuyifei,76,95,86,74,68,74,48
english,huangdatou,48,58,67,86,15,33,85
algorithm,huanglei,76,95,86,74,68,74,48
algorithm,huangjiaju,85,75,86,85,85,74,86
computer,huangdatou,48,58,67,86,15,33,85
english,zhouqi,85,86,41,75,93,42,85,75,55,47,22
english,huangbo,85,42,96,38,55,47,22
algorithm,liutao,85,75,85,99,66
computer,huangzitao,85,86,41,75,93,42,85
math,wangbaoqiang,85,86,41,75,93,42,85
computer,liujialing,85,41,75,21,85,96,14,74,86
computer,liuyifei,75,85,62,48,54,96,15
computer,liutao,85,75,85,99,66,88,75,91
computer,huanglei,76,95,86,74,68,74,48
english,liujialing,75,85,62,48,54,96,15
math,huanglei,76,95,86,74,68,74,48
math,huangjiaju,85,75,86,85,85,74,86
math,liutao,48,58,67,86,15,33,85
english,huanglei,85,75,85,99,66,88,75,91
math,xuzheng,54,52,86,91,42,85,75
math,huangxiaoming,85,75,85,99,66,88,75,91
math,liujialing,85,86,41,75,93,42,85,75
english,huangxiaoming,85,86,41,75,93,42,85
algorithm,huangdatou,48,58,67,86,15,33,85
algorithm,huangzitao,85,86,41,75,93,42,85,75

一、数据解释
数据字段个数不固定: 第一个是课程名称,总共四个课程,computer,math,english,algorithm, 第二个是学生姓名,后面是每次考试的分数
二、统计需求: 1、统计每门课程的参考人数和课程平均分
2、统计每门课程参考学生的平均分,并且按课程存入不同的结果文件,要求一门课程一个结果文件,并且按平均分从高到低排序,分数保留一位小数
3、求出每门课程参考学生成绩最高的学生的信息:课程,姓名和平均分
第一题
CourseScoreMR1.java

View Code
第二题
CourseScoreMR2.java

View Code
CSPartitioner.java

View Code
第三题
CourseScoreMR3.java

View Code
CourseScoreGC.java

View Code
|