HK123COM / Zookeeper / ZooKeeper学习之路 (九)利用ZooKeeper搭...

分享

   

ZooKeeper学习之路 (九)利用ZooKeeper搭建Hadoop的HA集群

2019-02-14  HK123COM

目录

 

正文

Hadoop HA 原理概述

为什么会有 hadoop HA 机制呢?

  HA:High Available,高可用

  在Hadoop 2.0之前,在HDFS 集群中NameNode 存在单点故障 (SPOF:A Single Point of Failure)。 对于只有一个 NameNode 的集群,如果 NameNode 机器出现故障(比如宕机或是软件、硬件 升级),那么整个集群将无法使用,直到 NameNode 重新启动

那如何解决呢?

  HDFS 的 HA 功能通过配置 Active/Standby 两个 NameNodes 实现在集群中对 NameNode 的 热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方 式将 NameNode 很快的切换到另外一台机器。

  在一个典型的 HDFS(HA) 集群中,使用两台单独的机器配置为 NameNodes 。在任何时间点, 确保 NameNodes 中只有一个处于 Active 状态,其他的处在 Standby 状态。其中 ActiveNameNode 负责集群中的所有客户端操作,StandbyNameNode 仅仅充当备机,保证一 旦 ActiveNameNode 出现问题能够快速切换。

  为了能够实时同步 Active 和 Standby 两个 NameNode 的元数据信息(实际上 editlog),需提 供一个共享存储系统,可以是 NFS、QJM(Quorum Journal Manager)或者 Zookeeper,Active Namenode 将数据写入共享存储系统,而 Standby 监听该系统,一旦发现有新数据写入,则 读取这些数据,并加载到自己内存中,以保证自己内存状态与 Active NameNode 保持基本一 致,如此这般,在紧急情况下 standby 便可快速切为 active namenode。为了实现快速切换, Standby 节点获取集群的最新文件块信息也是很有必要的。为了实现这一目标,DataNode 需 要配置 NameNodes 的位置,并同时给他们发送文件块信息以及心跳检测。

集群规划

  描述:hadoop HA 集群的搭建依赖于 zookeeper,所以选取三台当做 zookeeper 集群 ,总共准备了四台主机,分别是 hadoop1,hadoop2,hadoop3,hadoop4 其中 hadoop1 和 hadoop2 做 namenode 的主备切换,hadoop3 和 hadoop4 做 resourcemanager 的主备切换

四台机器

集群服务器准备

1、 修改主机名

2、 修改 IP 地址

3、 添加主机名和 IP 映射

4、 添加普通用户 hadoop 用户并配置 sudoer 权限

5、 设置系统启动级别

6、 关闭防火墙/关闭 Selinux

7、 安装 JDK 两种准备方式:

  1、 每个节点都单独设置,这样比较麻烦。线上环境可以编写脚本实现

  2、 虚拟机环境可是在做完以上 7 步之后,就进行克隆

  3、 然后接着再给你的集群配置 SSH 免密登陆和搭建时间同步服务

8、 配置 SSH 免密登录

9、 同步服务器时间

具体操作可以参考普通分布式搭建过程http://www.cnblogs.com/qingyunzong/p/8496127.html

集群安装

1、安装 Zookeeper 集群

具体安装步骤参考之前的文档http://www.cnblogs.com/qingyunzong/p/8619184.html

2、安装 hadoop 集群

(1)获取安装包

  从官网或是镜像站下载

  http://hadoop.apache.org/

  http://mirrors.hust.edu.cn/apache/

(2)上传解压缩

[hadoop@hadoop1 ~]$ ls
apps  hadoop-2.7.5-centos-6.7.tar.gz  movie2.jar  users.dat                zookeeper.out
data  log                             output2     zookeeper-3.4.10.tar.gz
[hadoop@hadoop1 ~]$ tar -zxvf hadoop-2.7.5-centos-6.7.tar.gz -C apps/

(3)修改配置文件

  配置文件目录:/home/hadoop/apps/hadoop-2.7.5/etc/hadoop

  修改 hadoop-env.sh文件

[hadoop@hadoop1 ~]$ cd apps/hadoop-2.7.5/etc/hadoop/
[hadoop@hadoop1 hadoop]$ echo $JAVA_HOME
/usr/local/jdk1.8.0_73
[hadoop@hadoop1 hadoop]$ vi hadoop-env.sh 

  修改core-site.xml

[hadoop@hadoop1 hadoop]$ vi core-site.xml
复制代码
 1 <configuration>
 2     <!-- 指定hdfs的nameservice为myha01 -->
 3     <property>
 4         <name>fs.defaultFS</name>
 5         <value>hdfs://myha01/</value>
 6     </property>
 7 
 8     <!-- 指定hadoop临时目录 -->
 9     <property>
10         <name>hadoop.tmp.dir</name>
11         <value>/home/hadoop/data/hadoopdata/</value>
12     </property>
13 
14     <!-- 指定zookeeper地址 -->
15     <property>
16         <name>ha.zookeeper.quorum</name>
17         <value>hadoop1:2181,hadoop2:2181,hadoop3:2181,hadoop4:2181</value>
18     </property>
19 
20     <!-- hadoop链接zookeeper的超时时长设置 -->
21     <property>
22         <name>ha.zookeeper.session-timeout.ms</name>
23         <value>1000</value>
24         <description>ms</description>
25     </property>
26 </configuration>
复制代码

  修改hdfs-site.xml

[hadoop@hadoop1 hadoop]$ vi hdfs-site.xml 
复制代码
  1 <configuration>
  2 
  3     <!-- 指定副本数 -->
  4     <property>
  5         <name>dfs.replication</name>
  6         <value>2</value>
  7     </property>
  8 
  9     <!-- 配置namenode和datanode的工作目录-数据存储目录 -->
 10     <property>
 11         <name>dfs.namenode.name.dir</name>
 12         <value>/home/hadoop/data/hadoopdata/dfs/name</value>
 13     </property>
 14     <property>
 15         <name>dfs.datanode.data.dir</name>
 16         <value>/home/hadoop/data/hadoopdata/dfs/data</value>
 17     </property>
 18 
 19     <!-- 启用webhdfs -->
 20     <property>
 21         <name>dfs.webhdfs.enabled</name>
 22         <value>true</value>
 23     </property>
 24 
 25     <!--指定hdfs的nameservice为myha01,需要和core-site.xml中的保持一致 
 26                  dfs.ha.namenodes.[nameservice id]为在nameservice中的每一个NameNode设置唯一标示符。 
 27         配置一个逗号分隔的NameNode ID列表。这将是被DataNode识别为所有的NameNode。 
 28         例如,如果使用"myha01"作为nameservice ID,并且使用"nn1"和"nn2"作为NameNodes标示符 
 29     -->
 30     <property>
 31         <name>dfs.nameservices</name>
 32         <value>myha01</value>
 33     </property>
 34 
 35     <!-- myha01下面有两个NameNode,分别是nn1,nn2 -->
 36     <property>
 37         <name>dfs.ha.namenodes.myha01</name>
 38         <value>nn1,nn2</value>
 39     </property>
 40 
 41     <!-- nn1的RPC通信地址 -->
 42     <property>
 43         <name>dfs.namenode.rpc-address.myha01.nn1</name>
 44         <value>hadoop1:9000</value>
 45     </property>
 46 
 47     <!-- nn1的http通信地址 -->
 48     <property>
 49         <name>dfs.namenode.http-address.myha01.nn1</name>
 50         <value>hadoop1:50070</value>
 51     </property>
 52 
 53     <!-- nn2的RPC通信地址 -->
 54     <property>
 55         <name>dfs.namenode.rpc-address.myha01.nn2</name>
 56         <value>hadoop2:9000</value>
 57     </property>
 58 
 59     <!-- nn2的http通信地址 -->
 60     <property>
 61         <name>dfs.namenode.http-address.myha01.nn2</name>
 62         <value>hadoop2:50070</value>
 63     </property>
 64 
 65     <!-- 指定NameNode的edits元数据的共享存储位置。也就是JournalNode列表 
 66                  该url的配置格式:qjournal://host1:port1;host2:port2;host3:port3/journalId 
 67         journalId推荐使用nameservice,默认端口号是:8485 -->
 68     <property>
 69         <name>dfs.namenode.shared.edits.dir</name>
 70         <value>qjournal://hadoop1:8485;hadoop2:8485;hadoop3:8485/myha01</value>
 71     </property>
 72 
 73     <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
 74     <property>
 75         <name>dfs.journalnode.edits.dir</name>
 76         <value>/home/hadoop/data/journaldata</value>
 77     </property>
 78 
 79     <!-- 开启NameNode失败自动切换 -->
 80     <property>
 81         <name>dfs.ha.automatic-failover.enabled</name>
 82         <value>true</value>
 83     </property>
 84 
 85     <!-- 配置失败自动切换实现方式 -->
 86     <property>
 87         <name>dfs.client.failover.proxy.provider.myha01</name>
 88         <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
 89     </property>
 90 
 91     <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行 -->
 92     <property>
 93         <name>dfs.ha.fencing.methods</name>
 94         <value>
 95             sshfence
 96             shell(/bin/true)
 97         </value>
 98     </property>
 99 
100     <!-- 使用sshfence隔离机制时需要ssh免登陆 -->
101     <property>
102         <name>dfs.ha.fencing.ssh.private-key-files</name>
103         <value>/home/hadoop/.ssh/id_rsa</value>
104     </property>
105 
106     <!-- 配置sshfence隔离机制超时时间 -->
107     <property>
108         <name>dfs.ha.fencing.ssh.connect-timeout</name>
109         <value>30000</value>
110     </property>
111 
112     <property>
113         <name>ha.failover-controller.cli-check.rpc-timeout.ms</name>
114         <value>60000</value>
115     </property>
116 </configuration>
复制代码

  修改mapred-site.xml 

[hadoop@hadoop1 hadoop]$ cp mapred-site.xml.template mapred-site.xml
[hadoop@hadoop1 hadoop]$ vi mapred-site.xml
复制代码
 1 <configuration>
 2     <!-- 指定mr框架为yarn方式 -->
 3     <property>
 4         <name>mapreduce.framework.name</name>
 5         <value>yarn</value>
 6     </property>
 7     
 8     <!-- 指定mapreduce jobhistory地址 -->
 9     <property>
10         <name>mapreduce.jobhistory.address</name>
11         <value>hadoop1:10020</value>
12     </property>
13     
14     <!-- 任务历史服务器的web地址 -->
15     <property>
16         <name>mapreduce.jobhistory.webapp.address</name>
17         <value>hadoop1:19888</value>
18     </property>
19 </configuration>
复制代码

  修改yarn-site.xml 

[hadoop@hadoop1 hadoop]$ vi yarn-site.xml 
复制代码
 1 <configuration>
 2     <!-- 开启RM高可用 -->
 3     <property>
 4         <name>yarn.resourcemanager.ha.enabled</name>
 5         <value>true</value>
 6     </property>
 7 
 8     <!-- 指定RM的cluster id -->
 9     <property>
10         <name>yarn.resourcemanager.cluster-id</name>
11         <value>yrc</value>
12     </property>
13 
14     <!-- 指定RM的名字 -->
15     <property>
16         <name>yarn.resourcemanager.ha.rm-ids</name>
17         <value>rm1,rm2</value>
18     </property>
19 
20     <!-- 分别指定RM的地址 -->
21     <property>
22         <name>yarn.resourcemanager.hostname.rm1</name>
23         <value>hadoop3</value>
24     </property>
25 
26     <property>
27         <name>yarn.resourcemanager.hostname.rm2</name>
28         <value>hadoop4</value>
29     </property>
30 
31     <!-- 指定zk集群地址 -->
32     <property>
33         <name>yarn.resourcemanager.zk-address</name>
34         <value>hadoop1:2181,hadoop2:2181,hadoop3:2181</value>
35     </property>
36 
37     <property>
38         <name>yarn.nodemanager.aux-services</name>
39         <value>mapreduce_shuffle</value>
40     </property>
41 
42     <property>
43         <name>yarn.log-aggregation-enable</name>
44         <value>true</value>
45     </property>
46 
47     <property>
48         <name>yarn.log-aggregation.retain-seconds</name>
49         <value>86400</value>
50     </property>
51 
52     <!-- 启用自动恢复 -->
53     <property>
54         <name>yarn.resourcemanager.recovery.enabled</name>
55         <value>true</value>
56     </property>
57 
58     <!-- 制定resourcemanager的状态信息存储在zookeeper集群上 -->
59     <property>
60         <name>yarn.resourcemanager.store.class</name>
61         <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
62     </property>
63 </configuration>
复制代码

   修改slaves

[hadoop@hadoop1 hadoop]$ vi slaves 
hadoop1
hadoop2
hadoop3
hadoop4

 (4)将hadoop安装包分发到其他集群节点

重点强调: 每台服务器中的hadoop安装包的目录必须一致, 安装包的配置信息还必须保持一致
重点强调: 每台服务器中的hadoop安装包的目录必须一致, 安装包的配置信息还必须保持一致
重点强调: 每台服务器中的hadoop安装包的目录必须一致, 安装包的配置信息还必须保持一致

[hadoop@hadoop1 apps]$ scp -r hadoop-2.7.5/ hadoop2:$PWD
[hadoop@hadoop1 apps]$ scp -r hadoop-2.7.5/ hadoop3:$PWD
[hadoop@hadoop1 apps]$ scp -r hadoop-2.7.5/ hadoop4:$PWD

 (5)配置Hadoop环境变量

千万注意:

1、如果你使用root用户进行安装。 vi /etc/profile 即可 系统变量

2、如果你使用普通用户进行安装。 vi ~/.bashrc 用户变量

本人是用的hadoop用户安装的

[hadoop@hadoop1 ~]$ vi .bashrc
export HADOOP_HOME=/home/hadoop/apps/hadoop-2.7.5
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:

 

  使环境变量生效

[hadoop@hadoop1 bin]$ source ~/.bashrc 

 (6)查看hadoop版本

复制代码
[hadoop@hadoop4 ~]$ hadoop version
Hadoop 2.7.5
Subversion Unknown -r Unknown
Compiled by root on 2017-12-24T05:30Z
Compiled with protoc 2.5.0
From source with checksum 9f118f95f47043332d51891e37f736e9
This command was run using /home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/hadoop-common-2.7.5.jar
[hadoop@hadoop4 ~]$ 
复制代码

 

Hadoop HA集群的初始化

重点强调:一定要按照以下步骤逐步进行操作

重点强调:一定要按照以下步骤逐步进行操作

重点强调:一定要按照以下步骤逐步进行操作

1、启动ZooKeeper

  启动4台服务器上的zookeeper服务

  hadoop1

复制代码
[hadoop@hadoop1 conf]$ zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[hadoop@hadoop1 conf]$ jps
2674 Jps
2647 QuorumPeerMain
[hadoop@hadoop1 conf]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
[hadoop@hadoop1 conf]$ 
复制代码

  hadoop2

复制代码
[hadoop@hadoop2 conf]$ zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[hadoop@hadoop2 conf]$ jps
2592 QuorumPeerMain
2619 Jps
[hadoop@hadoop2 conf]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
[hadoop@hadoop2 conf]$ 
复制代码

     hadoop3

复制代码
[hadoop@hadoop3 conf]$ zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[hadoop@hadoop3 conf]$ jps
16612 QuorumPeerMain
16647 Jps
[hadoop@hadoop3 conf]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: leader
[hadoop@hadoop3 conf]$ 
复制代码

  hadoop4

复制代码
[hadoop@hadoop4 conf]$ zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[hadoop@hadoop4 conf]$ jps
3596 Jps
3567 QuorumPeerMain
[hadoop@hadoop4 conf]$ zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /home/hadoop/apps/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: observer
[hadoop@hadoop4 conf]$ 
复制代码

2、在你配置的各个journalnode节点启动该进程

  按照之前的规划,我的是在hadoop1、hadoop2、hadoop3上进行启动,启动命令如下

  hadoop1

复制代码
[hadoop@hadoop1 conf]$ hadoop-daemon.sh start journalnode
starting journalnode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-journalnode-hadoop1.out
[hadoop@hadoop1 conf]$ jps
2739 JournalNode
2788 Jps
2647 QuorumPeerMain
[hadoop@hadoop1 conf]$ 
复制代码

  hadoop2

复制代码
[hadoop@hadoop2 conf]$ hadoop-daemon.sh start journalnode
starting journalnode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-journalnode-hadoop2.out
[hadoop@hadoop2 conf]$ jps
2592 QuorumPeerMain
3049 JournalNode
3102 Jps
[hadoop@hadoop2 conf]$ 
复制代码

  hadoop3

复制代码
[hadoop@hadoop3 conf]$ hadoop-daemon.sh start journalnode
starting journalnode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-journalnode-hadoop3.out
[hadoop@hadoop3 conf]$ jps
16612 QuorumPeerMain
16712 JournalNode
16766 Jps
[hadoop@hadoop3 conf]$ 
复制代码

3、格式化namenode

  先选取一个namenode(hadoop1)节点进行格式化

[hadoop@hadoop1 ~]$ hadoop namenode -format
View Code

4、要把在hadoop1节点上生成的元数据 给复制到 另一个namenode(hadoop2)节点上

复制代码

[hadoop@hadoop1 ~]$ cd data/
[hadoop@hadoop1 data]$ ls
hadoopdata journaldata zkdata
[hadoop@hadoop1 data]$ scp -r hadoopdata/ hadoop2:$PWD
VERSION 100% 206 0.2KB/s 00:00
fsimage_0000000000000000000.md5 100% 62 0.1KB/s 00:00
fsimage_0000000000000000000 100% 323 0.3KB/s 00:00
seen_txid 100% 2 0.0KB/s 00:00
[hadoop@hadoop1 data]$

复制代码

 

5、格式化zkfc

重点强调:只能在nameonde节点进行

重点强调:只能在nameonde节点进行

重点强调:只能在nameonde节点进行

[hadoop@hadoop1 data]$ hdfs zkfc -formatZK
View Code

启动集群

1、启动HDFS

  可以从启动输出日志里面看到启动了哪些进程

复制代码
[hadoop@hadoop1 ~]$ start-dfs.sh
Starting namenodes on [hadoop1 hadoop2]
hadoop2: starting namenode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-namenode-hadoop2.out
hadoop1: starting namenode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-namenode-hadoop1.out
hadoop3: starting datanode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop3.out
hadoop4: starting datanode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop4.out
hadoop2: starting datanode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop2.out
hadoop1: starting datanode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-datanode-hadoop1.out
Starting journal nodes [hadoop1 hadoop2 hadoop3]
hadoop3: journalnode running as process 16712. Stop it first.
hadoop2: journalnode running as process 3049. Stop it first.
hadoop1: journalnode running as process 2739. Stop it first.
Starting ZK Failover Controllers on NN hosts [hadoop1 hadoop2]
hadoop2: starting zkfc, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-zkfc-hadoop2.out
hadoop1: starting zkfc, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-zkfc-hadoop1.out
[hadoop@hadoop1 ~]$ 
复制代码

  查看各节点进程是否正常

  hadoop1

  hadoop2

 

  hadoop3

 

  hadoop4

  

2、启动YARN

  在主备 resourcemanager 中随便选择一台进行启动

复制代码
[hadoop@hadoop4 ~]$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-resourcemanager-hadoop4.out
hadoop3: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-nodemanager-hadoop3.out
hadoop2: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-nodemanager-hadoop2.out
hadoop4: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-nodemanager-hadoop4.out
hadoop1: starting nodemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-nodemanager-hadoop1.out
[hadoop@hadoop4 ~]$ 
复制代码

 

  正常启动之后,检查各节点的进程

hadoop1

hadoop2

hadoop3

hadoop4

 

若备用节点的 resourcemanager 没有启动起来,则手动启动起来,在hadoop3上进行手动启动

复制代码
[hadoop@hadoop3 ~]$ yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-resourcemanager-hadoop3.out
[hadoop@hadoop3 ~]$ jps
17492 ResourceManager
16612 QuorumPeerMain
16712 JournalNode
17532 Jps
17356 NodeManager
16830 DataNode
[hadoop@hadoop3 ~]$ 
复制代码

 

 

3、启动 mapreduce 任务历史服务器

复制代码
[hadoop@hadoop1 ~]$ mr-jobhistory-daemon.sh start historyserver
starting historyserver, logging to /home/hadoop/apps/hadoop-2.7.5/logs/mapred-hadoop-historyserver-hadoop1.out
[hadoop@hadoop1 ~]$ jps
4016 NodeManager
2739 JournalNode
4259 Jps
3844 DFSZKFailoverController
2647 QuorumPeerMain
3546 DataNode
4221 JobHistoryServer
3407 NameNode
[hadoop@hadoop1 ~]$ 
复制代码

 

4、查看各主节点的状态

HDFS

[hadoop@hadoop1 ~]$ hdfs haadmin -getServiceState nn1
standby
[hadoop@hadoop1 ~]$ hdfs haadmin -getServiceState nn2
active
[hadoop@hadoop1 ~]$ 

YARN

[hadoop@hadoop4 ~]$ yarn rmadmin -getServiceState rm1
standby
[hadoop@hadoop4 ~]$ yarn rmadmin -getServiceState rm2
active
[hadoop@hadoop4 ~]$ 

5、WEB界面进行查看

HDFS

hadoop1

hadoop2

YARN

standby节点会自动跳到avtive节点

MapReduce历史服务器web界面

 

 集群性能测试

1、干掉 active namenode, 看看集群有什么变化

目前hadoop2上的namenode节点是active状态,干掉他的进程看看hadoop1上的standby状态的namenode能否自动切换成active状态

复制代码
[hadoop@hadoop2 ~]$ jps
4032 QuorumPeerMain
4400 DFSZKFailoverController
4546 NodeManager
4198 DataNode
4745 Jps
4122 NameNode
4298 JournalNode
[hadoop@hadoop2 ~]$ kill -9 4122
复制代码

  hadoop2

  hadoop1

 

 自动切换成功

2、在上传文件的时候干掉 active namenode, 看看有什么变化

  首先将hadoop2上的namenode节点手动启动起来

复制代码
[hadoop@hadoop2 ~]$ hadoop-daemon.sh start namenode
starting namenode, logging to /home/hadoop/apps/hadoop-2.7.5/logs/hadoop-hadoop-namenode-hadoop2.out
[hadoop@hadoop2 ~]$ jps
4032 QuorumPeerMain
4400 DFSZKFailoverController
4546 NodeManager
4198 DataNode
4823 NameNode
4298 JournalNode
4908 Jps
[hadoop@hadoop2 ~]$ 
复制代码

  找一个比较大的文件,进行文件上传操作,5秒钟的时候干掉active状态的namenode,看看文件是否能上传成功

  hadoop2进行上传

复制代码
[hadoop@hadoop2 ~]$ ll
总用量 194368
drwxrwxr-x 4 hadoop hadoop      4096 3月  23 19:48 apps
drwxrwxr-x 5 hadoop hadoop      4096 3月  23 20:38 data
-rw-rw-r-- 1 hadoop hadoop 199007110 3月  24 09:51 hadoop-2.7.5-centos-6.7.tar.gz
drwxrwxr-x 3 hadoop hadoop      4096 3月  21 19:47 log
-rw-rw-r-- 1 hadoop hadoop      9935 3月  24 09:48 zookeeper.out
[hadoop@hadoop2 ~]$ hadoop fs -put hadoop-2.7.5-centos-6.7.tar.gz /hadoop/
复制代码

  hadoop1准备随时干掉namenode

复制代码
[hadoop@hadoop1 ~]$ jps
4128 DataNode
4498 DFSZKFailoverController
3844 QuorumPeerMain
4327 JournalNode
5095 Jps
4632 NodeManager
4814 JobHistoryServer
4015 NameNode
[hadoop@hadoop1 ~]$ kill -9 4015
复制代码

  hadoop2上的信息,在干掉hadoop1上namenode进程的时候,hadoop2报错

View Code

  在HDFS系统或web界面查看是否上传成功

  命令查看

[hadoop@hadoop1 ~]$ hadoop fs -ls /hadoop/
Found 1 items
-rw-r--r--   2 hadoop supergroup  199007110 2018-03-24 09:54 /hadoop/hadoop-2.7.5-centos-6.7.tar.gz
[hadoop@hadoop1 ~]$ 

  web界面下载

  发现HDFS系统的文件大小和我们要上传的文件大小一致,均为199007110,说明在上传过程中干掉active状态的namenode,我们仍可以上传成功,HA起作用了

3、干掉 active resourcemanager, 看看集群有什么变化

  目前hadoop4上的resourcemanager是活动的,干掉他的进程观察情况

复制代码
[hadoop@hadoop4 ~]$ jps
3248 ResourceManager
3028 QuorumPeerMain
3787 Jps
3118 DataNode
3358 NodeManager
[hadoop@hadoop4 ~]$ kill -9 3248
复制代码

   发现hadoop4的web界面打不开了

  打开hadoop3上YARN的web界面查看,发现hadoop3上的resourcemanager变为active状态

4、在执行任务的时候干掉 active resourcemanager,看看集群有什么变化

  上传一个比较大的文件到HDFS系统上

复制代码
[hadoop@hadoop1 output2]$ hadoop fs -mkdir -p /words/input/
[hadoop@hadoop1 output2]$ ll
总用量 82068
-rw-r--r--. 1 hadoop hadoop 84034300 3月  21 22:18 part-r-00000
-rw-r--r--. 1 hadoop hadoop        0 3月  21 22:18 _SUCCESS
[hadoop@hadoop1 output2]$ hadoop fs -put part-r-00000 /words/input/words.txt
[hadoop@hadoop1 output2]$ 
复制代码

  执行wordcount进行单词统计,在map执行过程中干掉active状态的resourcemanager,观察情况变化

  首先启动hadoop4上的resourcemanager进程

复制代码
[hadoop@hadoop4 ~]$ yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /home/hadoop/apps/hadoop-2.7.5/logs/yarn-hadoop-resourcemanager-hadoop4.out
[hadoop@hadoop4 ~]$ jps
3028 QuorumPeerMain
3847 ResourceManager
3884 Jps
3118 DataNode
3358 NodeManager
[hadoop@hadoop4 ~]$ 
复制代码

  在hadoop1上执行单词统计

[hadoop@hadoop1 ~]$ cd apps/hadoop-2.7.5/share/hadoop/mapreduce/
[hadoop@hadoop1 mapreduce]$ hadoop jar hadoop-mapreduce-examples-2.7.5.jar wordcount /words/input/ /words/output/

  在hadoop3上随时准备干掉resourcemanager进程

复制代码
[hadoop@hadoop3 ~]$ jps
3488 JournalNode
3601 NodeManager
4378 Jps
3291 QuorumPeerMain
3389 DataNode
3757 ResourceManager
[hadoop@hadoop3 ~]$ kill -9 3757
复制代码

   在map阶段进行到43%时干掉resourcemanager进程

View Code

  发现计算过程没有任何报错,web界面也显示任务执行成功

 

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多

    ×
    ×

    ¥.00

    微信或支付宝扫码支付:

    开通即同意《个图VIP服务协议》

    全部>>