Marit Ackermann and Korbinian Strimmer. A general modular framework for gene set enrichment analysis. BMC Bioinformatics, 10(1):1, 2009.
William T. Barry, Andrew B. Nobel, and Fred Wright. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics, 21(9):1943–1949, May 2005.
Thomas Breslin, Patrik Eden, and Morten Krogh. Comparing functional annotation analyses with Catmap. BMC Bioinformatics, 5(1):193, 2004.
Irina Dinu, John D Potter, Thomas Mueller, Qi Liu, Adeniyi J Adewale, Gian S Jhangri, Gunilla Einecke, Konrad S Famulski, Philip Halloran, and Yutaka Yasui. Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics, 8(1):242, 2007.
Sorin Draghici, Purvesh Khatri, Adi L Tarca, Kashyap Amin, Arina Done, Calin Voichita, Constantin Georgescu, and Roberto Romero. A systems biology approach for pathway level analysis.Genome Research, 17(10):1537–1545, 2007.
Bhaskar Dutta, Anders Wallqvist, and Jaques Reifman. PathNet: A tool for pathway analysis using topological information. Source Code for Biology and Medicine,7(1):10, 2012.
Bradley Efron and Robert Tibshirani. On testing the significance of sets of genes.The Annals of Applied Statistics, 1(1):107–129, 2007.
Ludwig Geistlinger, Gergely Csaba, Robert Kuffner, Nicola Mulder, and Ralf Zimmer.From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics, 27(13):i366–i373, 2011.
Enrico Glaab, Anaıs Baudot, Natalio Krasnogor, and Alfonso Valencia. TopoGSA: network topological gene set analysis. Bioinformatics, 26(9):1271–1272, 2010.
Jelle J. Goeman, Sara A. van deGeer,Floor deKort, and Hans C. vanHouwelingen. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics, 20(1):93–99, 2004.
Greenblum, S. Efroni, C.Schaefer, and K. Buetow. The PathOlogist: an automated tool for pathway-centric analysis. BMC Bioinformatics, 12(1):133, 2011.
Zuguang Gu, Jialin Liu, Kunming Cao, Junfeng Zhang, and Jin Wang. Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes.BMC systems biology, 6(1):56, 2012.
Zuguang Gu and JinWang. Cepa: an R package for finding significant pathways weighted by multiple network centralities. Bioinformatics, 29(5):658–660, 2013.
Corneliu Henegar, Raffaella Cancello, Sophie Rome, Hubert Vidal, Karine Clement, and Jean-Daniel Zucker. Clustering biological annotations and gene expression data to identify putatively co-regulated biological processes. Journal of bioinformatics and computational biology, 4(04):833–852, 2006.
Jui-Hung Hung, Troy W Whitfield, Tun-Hsiang Yang, Zhenjun Hu, Zhiping Weng, and Charles DeLisi. Identification of functional modules that correlate with phenotypic difference: the influence of network topology.Genome Biology, 11(2):R23, 2010.
Laurent Jacob, Pierre Neuvial, and Sandrine Dudoit. Gains inpower from structured two-sample tests of means on graphs. Arxiv preprint arXiv:1009.5173, 2010.
Zhen Jiang and Robert Gentleman. Extensions to gene set enrichment. Bioinformatics, 23(3):306–313, 2007.
Purvesh Khatri, Sorin Draghici, Adi L Tarca, Sonia S Hassan, and Roberto Romero. A system biology approach for the steady-state analysis of gene signaling networks. In CIARP’07 Proceedings of the 12th Iberoamerican conference on Progress in pattern recognition, image analysis and applications, pages32–41, Valparaiso, Chile, 13-16 November 2007. ACM.
Sek Won Kong, William T Pu, and Peter J Park. A multivariate approach for integrating genome-wide expression data and biological knowledge. Bioinformatics, 22(19):2373–2380, 2006.
Maria S Massa, Monica Chiogna, and Chiara Romualdi. Gene set analysis exploiting the topology of a pathway. BMC Systems Biology, 4(1):121, 2010.
Cristina Mitrea, Zeinab Taghavi, Behzad Bokanizad, Samer Hanoudi, Rebecca Tagett, Michele Donato, Calin Voichita, and Sorin Draghici. Methods and approaches in the topology-based analysis of biological pathways. Frontiers in Physiology, 4:278, 2013.
Tin Nguyen and Sorin Draghici. BLMA: A package for bi-level meta-analysis. Bioconductor, 2017. R package.
Tin Nguyen, Rebecca Tagett, Michele Donato, Cristina Mitrea, and Sorin Draghici. A novel bi-level meta-analysis approach-applied to biological pathway analysis. Bioinformatics, 32(3):409–416, 2016.
Ali Shojaie and George Michailidis. Analysis of Gene Sets Based on the Underlying Regulatory Net- work. Journal of Computational Biology,16(3):407–426, 2009.
Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R. Golub, Eric S. Lander, and Jill P.Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression. Proceeding of TheNational Academy of Sciences of the Unites States of America, 102(43):15545–15550, 2005.
Adi L Tarca, Sorin Draghici, Gaurav Bhatti, and Roberto Romero. Down-weighting overlapping genes improves gene set analysis. BMC Bioinformatics, 13(1):136, 2012.
Adi L Tarca, Sorin Draghici, Purvesh Khatri, Sonia S Hassan, Pooja Mittal, Jung-sun Kim, Chong Jai Kim, Juan Pedro Kusanovic, and Roberto Romero. A novel signaling pathway impact analysis. Bioinformatics, 25(1):75–82, 2009.
Lu Tian, Steven A.Greenberg, Sek WonKong, Josiah Altschuler, Isaac S. Kohane, and Peter J. Park. Discovering statistically significant pathways in expression profiling studies. Proceedingof TheNational Academy of Sciences of the USA, 102(38):13544–13549, 2005.
Calin Voichita, Michele Donato, and Sorin Draghici. Incorporating gene significance in the impact analysis of signaling pathways. In Machine Learning and Applications (ICMLA), 2012 11th International Conference on, volume1, pages126–131, Boca Raton, FL, USA, 12-15 December 2012.