高考是人生重要的一个转折点,能否牢牢的把握住,关系到我们每一个高三的学生。在高中这些科目中,数学冲刺复习一定要把大纲中规定的核心重要考点进行梳理,结合做题来进一步的巩固,熟练把握。下面高考学习网小编整合了高数、线代和概率部分的核心考点,广大考生再来梳理看看,你是否复习有所遗漏…… 肖博高中高考数学答题技巧方法及常见问题 总的来说,答题技巧无外乎包括以下几大方面: 1. 摸透“题型”:刚刚拿到试卷,一般心里比较紧张,不要忙于作答,要从头到尾通览全卷,从卷面上获取最多的信息,为实施正确的集体策略做全面调查。 2. 信心十足:答题中,见到简单题要细心,莫忘乎所以。面对偏难的题,要有耐心,千万不要着急,力求做到:坚定信心,稳扎稳打,步步为营。整个过程中要记住:人易我易,我不大意。人难我难,我不畏惧。 3. 两先两后:即“先易后难”和“先高后低”。所谓先高后低指后半段时间如后两题都会做,则先做高分题,后作低分题。即使时间不足也少丢分,到最后十分钟,也应对那些拿不下来的题目就高分题“分段得分”,以增加在时间不足前提下的得分。 4. 讲求方法:做选择题时,除用直接法外,要牢记另外一些常用的,有效地方法,如排除法,特例检验法,估算法,数形结合法等。 5. 分段得分:分段得分的基本精神:会作的题目力求不失分,部分理解的题目力争多得分。 (1)缺步解答,若遇到一个很困难的问题,聪明的策略是:将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,特别是那些集体层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。 (2)退步解答 ,“以退求进”是一个重要的解题策略。当某个问题不易解决时,可以考虑问题的特殊形势,局部情形等,有时往往茅塞顿开。 (3)辅助解答,辅助解答的内容十分广泛,如准确做图,书写规范,完整,字迹清楚等都是辅助解答。有些选择题,“大胆猜测”也是辅助解答。 肖博高中高考数学答题技巧方法及常见问题 6. 立足中下题目,力争高水平中下题目在全卷占百分之八十,是试卷的主旋律,是得分的重要来源。能拿下这些题目,实际上就已经打了个胜仗。 以上是答题技巧的几点建议,另外要特别注意考前的状态,提前进入角色也很重要。 做题时,还有有一些“条件反射”你应该记住,这能帮你大大的节省时间!具体的看看下面吧!对你也一定有帮助! 1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……; 4、选择与填空中出现不等式的题目,优选特殊值法; 5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式; 8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点); 9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可; 10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围; 11、数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想; 12、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题; 肖博高中高考数学答题技巧方法及常见问题 13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上; 14、概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径; 15、遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成; 16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等; 17、绝对值问题优先选择去绝对值,去绝对值优先选择使用定义; 18、与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成; 19、关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。 大家把这些答题技巧和方法仔细多看几遍,一定要理解透,在平时练习做题时也一定要试着按照这些方法去有意识的锻炼,熟能生巧,当你习惯时,便可达到理想的解题答题状态,不该丢分的不会丢,该拿到分的也会拿到。 |
|
来自: 昵称62332524 > 《我的文件夹》