教材知识:三角形全等知识中,教材对全等三角形的图形变换概括为三种:平移型、翻折型、旋转型。 一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等. 归纳模型:三种变换中以旋转型为考试的热点和难点,这种变换我们往往也称为手拉手模型。因为这种图形变换都是以等腰三角形的顶点为旋转点,进行适当旋转而成。然后,连接对应点构造新的三角形,证明三角形全等即可解决。 划重点,上口诀:等腰图形有旋转, 辨清共点旋转边。 关注三边旋转角, 全等思考边角边。 模型变换:如图,△ABC是等腰三角形、△ADE是等腰三角形,AB=AC,AD=AE,∠BAC=∠DAE=a。 结论:连接BD、CE,则有△BAD≌△CAE。 模型证明:图②图③同理可证。 模型分析:(1)这个图形是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形。 (2)如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,所以把这个模型称为手拉手模型。 (3)手拉手模型常和旋转结合,在考试中作为几何综合题目出现。 模型实例:如图,△ADC与△EDG都为等腰直角三角形,连接AG、CE,相交于点H,问:(1)AG与CE是否相等?(2)AG与CE之间的夹角为多少度? 问题解答:模型实练:如图,在直线AB的同一侧作△ABD和△BCE,△ABD和△BCE都是等边三角形、连接AE、CD,二者交点为H. 求证:(1)△ABE≌△DBC;(2)AE=DC;(3)∠DHA=60°;(4)△AGB≌△DFB;(5)△EGB≌△CFB(6)连接GF,GF∥AC;(7)连接HB,HB平分∠AHC. |
|