马腾宇简介马腾宇现在是斯坦福大学计算机科学与统计学系助理教授,他博士毕业于普林斯顿大学计算机科学系。 马腾宇本科毕业于清华姚班,曾获得 2007 年国际中学生数学奥赛银牌(与金牌差一分),2010 年获得美国普特南大学生数学竞赛第 8 名,2014 年获得理论计算机研究生 Simon 奖。 博士论文简介马腾宇在博士论文「Non-convex Optimization for Machine Learning: Design, Analysis, and Understanding」中,提出了一种支持机器学习新趋势的全新理论。他提出的理论推进了对机器学习非凸优化算法收敛性的证明,概述了使用这种方法训练的机器学习模型的特性。 在论文的第一部分,马腾宇首先研究了矩阵补全、稀疏编码、神经网络简化、学习线性动态系统等一系列问题,还构建了帮助设计可证明的准确、高效优化算法的条件。在第二部分,马腾宇展示了如何理解、解释使用非凸优化学得的自然语言嵌入模型。
|
|