分享

Symbol Error Rate (SER) for QPSK (4

 rechardzy 2019-05-22

Given that we have discussed symbol error rate probability for a 4-PAM modulation, let us know focus on finding the symbol error probability for a QPSK (4-QAM) modulation scheme.

Background

Consider that the alphabets used for a QPSK (4-QAM) is (Refer example 5-35 in [DIG-COMM-BARRY-LEE-MESSERSCHMITT]).



4QAM constellation

Figure: Constellation plot for QPSK (4-QAM) constellation

The scaling factor of is for normalizing the average energy of the transmitted symbols to 1, assuming that all the constellation points are equally likely.

Noise model

Assuming that the additive noise follows the Gaussian probability distribution function,

with and .

Computing the probability of error

Consider the symbol

The conditional probability distribution function (PDF) of given was transmitted is:

.

probability density function for 4QAM

Figure: Probability density function for QPSK (4QAM) modulation

As can be seen from the above figure, the symbol is decoded correctly only if falls in the area in the hashed region i.e.

.

Probability of real component of greater than 0, given was transmitted is (i.e. area outside the red region)

, where

the complementary error function, .

Similarly, probability of imaginary component of greater than 0, given was transmitted is (i.e. area outside the blue region).

.

The probability of being decoded correctly is,

.

Total symbol error probability

The symbol will be in error, it atleast one of the symbol is decoded incorrectly. The probability of symbol error is,

.

For higher values of , the second term in the equation becomes negligible and the probability of error can be approximated as,

.

Simulation Model

Simple Matlab/Octave script for generating QPSK transmission, adding white Gaussian noise and decoding the received symbol for various values.

Click here to download: Matlab/Octave script for computing the symbol error rate for QPSK modulation

Figure: Symbol Error Rate for QPSK (4QAM) modulation

Observations

1. Can see good agreement between the simulated and theoretical plots for 4-QAM modulation

2. When compared with 4-PAM modulation, the 4-QAM modulation requires only around 2dB lower for achieving a symbol error rate of .

Reference

[DIG-COMM-BARRY-LEE-MESSERSCHMITT] Digital Communication: Third Edition, by John R. Barry, Edward A. Lee, David G. Messerschmitt

Hope this helps.

Krishna

Please click here to SUBSCRIBE to newsletter and download the FREE e-Book on probability of error in AWGN. Thanks for visiting! Happy learning.


    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多