分享

ACS Nano 精选文章

 昵称64296700 2019-05-24

Dissolvable and Recyclable Random Lasers 

    An integrated random laser based on green materials with dissolubility and recyclability is created and demonstrated. The dissolvable and recyclable random laser (DRRL) can be dissolved in water, accompanying the decay of emission intensity and the increment in lasing threshold. Furthermore, the DRRL can be reused after the process of deionized treatment, exhibiting excellent reproducibility with several recycling processes.


Highly Sensitive, Visible Blind, Wearable, and Omnidirectional Near-Infrared Photodetectors

Visible blind near-infrared (NIR) photodetection is essential when it comes to weapons used by military personnel, narrow band detectors used in space navigation systems, medicine, and research studies. The technological field of filterless visible blind, NIR omnidirectional photodetection and wearability is at a preliminary stage. Here, we present a filterless and lightweight design for a visible blind and wearable NIR photodetector capable of harvesting light omnidirectionally. The filterless NIR photodetector comprises the integration of distinct features of lanthanide-doped upconversion nanoparticles (UCNPs), graphene, and micropyramidal poly(dimethylsiloxane) (PDMS) film. The lanthanide-doped UCNPs are designed such that the maximum narrow band detection of NIR is easily accomplished by the photodetector even in the presence of visible light sources. Especially, the 4fn electronic configuration of lanthanide dopant ions provides for a multilevel hierarchical energy system that provides for longer lifetime of the excited states for photogenerated charge carriers to transfer to the graphene layer. The graphene layer can serve as an outstanding conduction path for photogenerated charge carrier transfer from UCNPs, and the flexible micropyramidal PDMS substrate provides an excellent platform for omnidirectional NIR light detection. Owing to these advantages, a photoresponsivity of ∼800 AW–1 is achieved by the NIR photodetector, which is higher than the values ever reported by UCNPs-based photodetectors. In addition, the photodetector is stretchable, durable, and transparent, making it suitable for next-generation wearable optoelectronic devices.


A Highly-Efficient Single Segment White Random Laser

Production of multicolor or multiple wavelength lasers over the full visible-color spectrum from a single chip device has widespread applications, such as superbright solid-state lighting, color laser displays, light-based version of Wi-Fi (Li-Fi), and bioimaging, etc. However, designing such lasing devices remains a challenging issue owing to the material requirements for producing multicolor emissions and sophisticated design for producing laser action. Here we demonstrate a simple design and highly efficient single segment white random laser based on solution-processed NaYF4:Yb/Er/Tm@NaYF4:Eu core–shell nanoparticles assisted by Au/MoO3 multilayer hyperbolic meta-materials. The multicolor lasing emitted from core–shell nanoparticles covering the red, green, and blue, simultaneously, can be greatly enhanced by the high photonic density of states with a suitable design of hyperbolic meta-materials, which enables decreasing the energy consumption of photon propagation. As a result, the energy upconversion emission is enhanced by ∼50 times with a drastic reduction of the lasing threshold. The multiple scatterings arising from the inherent nature of the disordered nanoparticle matrix provide a convenient way for the formation of closed feedback loops, which is beneficial for the coherent laser action. The experimental results were supported by the electromagnetic simulations derived from the finite-difference time-domain (FDTD) method. The approach shown here can greatly simplify the design of laser structures with color-tunable emissions, which can be extended to many other material systems. Together with the characteristics of angle free laser action, our device provides a promising solution toward the realization of many laser-based practical applications.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多