假设您在Linux上运行Django,并且您有一个视图,并且您希望该视图从名为cmd的子进程返回数据,该子进程对视图创建的文件进行操作,例如:likeo: def call_subprocess(request):
response = HttpResponse()
with tempfile.NamedTemporaryFile("W") as f:
f.write(request.GET['data']) # i.e. some data
# cmd operates on fname and returns output
p = subprocess.Popen(["cmd", f.name],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
out, err = p.communicate()
response.write(p.out) # would be text/plain...
return response
现在,假设cmd的启动时间非常慢,但运行时间非常快,并且它本身没有守护进程模式.我想改善这种观点的响应时间. 我想通过在工作池中启动一些cmd实例,让它们等待输入,并让call_process请求其中一个工作池进程处理数据,使整个系统运行得更快. 这实际上是两个部分: 第1部分.调用cmd和cmd的函数等待输入.这可以通过管道完成,即 def _run_subcmd():
p = subprocess.Popen(["cmd", fname],
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
# write 'out' to a tmp file
o = open("out.txt", "W")
o.write(out)
o.close()
p.close()
exit()
def _run_cmd(data):
f = tempfile.NamedTemporaryFile("W")
pipe = os.mkfifo(f.name)
if os.fork() == 0:
_run_subcmd(fname)
else:
f.write(data)
r = open("out.txt", "r")
out = r.read()
# read 'out' from a tmp file
return out
def call_process(request):
response = HttpResponse()
out = _run_cmd(request.GET['data'])
response.write(out) # would be text/plain...
return response
第2部分.在后台运行的一组正在等待数据的工作者.即,我们希望扩展上述内容,以便子进程已经运行,例如当Django实例初始化时,或者首次调用此call_process时,会创建一组这些worker WORKER_COUNT = 6
WORKERS = []
class Worker(object):
def __init__(index):
self.tmp_file = tempfile.NamedTemporaryFile("W") # get a tmp file name
os.mkfifo(self.tmp_file.name)
self.p = subprocess.Popen(["cmd", self.tmp_file],
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
self.index = index
def run(out_filename, data):
WORKERS[self.index] = Null # qua-mutex??
self.tmp_file.write(data)
if (os.fork() == 0): # does the child have access to self.p??
out, err = self.p.communicate()
o = open(out_filename, "w")
o.write(out)
exit()
self.p.close()
self.o.close()
self.tmp_file.close()
WORKERS[self.index] = Worker(index) # replace this one
return out_file
@classmethod
def get_worker() # get the next worker
# ... static, incrementing index
应该在某处对工作人员进行一些初始化,如下所示: def init_workers(): # create WORKERS_COUNT workers
for i in xrange(0, WORKERS_COUNT):
tmp_file = tempfile.NamedTemporaryFile()
WORKERS.push(Worker(i))
现在,我上面的内容变成了以下内容: def _run_cmd(data):
Worker.get_worker() # this needs to be atomic & lock worker at Worker.index
fifo = open(tempfile.NamedTemporaryFile("r")) # this stores output of cmd
Worker.run(fifo.name, data)
# please ignore the fact that everything will be
# appended to out.txt ... these will be tmp files, too, but named elsewhere.
out = fifo.read()
# read 'out' from a tmp file
return out
def call_process(request):
response = HttpResponse()
out = _run_cmd(request.GET['data'])
response.write(out) # would be text/plain...
return response
现在,问题: >这会有用吗? (我只是把它从头顶输入StackOverflow,所以我确定存在问题,但从概念上讲,它会起作用) >要寻找的问题是什么? >有更好的替代品吗?例如线程是否也能正常运行(它是Debian Lenny Linux)?是否有任何库可以处理这样的并行流程工作池? >我应该注意与Django的交互吗? 谢谢阅读!我希望你觉得这和我一样有趣. 布赖恩 解决方法: 看起来我正在推销这款产品,因为这是我第二次回复推荐. 但似乎您需要一个Message Queing服务,特别是一个分布式消息队列. 它是如何工作的: >您的Django应用程序请求CMD > CMD被添加到队列中 > CMD被推到了几个作品 >它被执行并且结果返回上游 大多数代码都存在,您不必去构建自己的系统. 看看最初用Django构建的Celery. http://www./ http:///blog/2009/09/10/rabbitmq-celery-and-django/ 来源:http://www./content-3-227951.html
|