分享

一位AI博士对人工智能学习的建议

 文渊阁326 2019-07-03

Github

由于现在网络资源比较多,尤其Github上更大方光彩

或者说B站上也有很多可以学习的资源

本文主要从人工智能整体框架学习阐述一些自己的看法

如有疏漏,请您海涵

基础阶段(数学基础 )

以Python为例,首先要打好Python基础,然后对Python进行进一步了解

熟悉Numpy科学计算库,熟悉Matplotlib可视化库以及数据分析库Panda,总的说就是学习掌握Python的相关知识

一位AI博士对人工智能学习的建议

打好数学基础:学习数学分析基础理论,对高等代数微积分等有所学习,尤其对线性代数矩阵论、概率论进行加强学习

一位AI博士对人工智能学习的建议

了解一部分计算机视觉或者自然语言处理的工具,看一下实战的例子,对其有一个直观的认识,了解一些比赛

入门阶段(机器学习)

对机器学习的经典算法原理进行推导学习,对机器学习的应用进行分析

Skleran库进行学习,知道如何优化参数以及迭代梯度

学会数据处理以及根据不同数据进行特征分析

通过可视化,对文本特征,图形特征,时间序列进行建模分析

对不同景点算法进行对比分析学习,对竞赛了解如何赢,怎么赢,了解大公司企业项目解决实例

进阶阶段(深度学习)

对神经网络,卷积,递归神经网络进行学习

学习Opencv库,了解主流框架

一位AI博士对人工智能学习的建议

基于Tensorflow或者Caffe进行实战训练,学习Keras等

使用Opencv做一些小项目

一位AI博士对人工智能学习的建议

对自然语言处理也进行学习和实战

终极进阶(夯实基础)

知道所有问题的优缺点和起源

对经典论文进行分析深挖复现

一位AI博士对人工智能学习的建议

了解深度学习进阶技能和模型比较

对神经网络深入学习

了解未来趋势

一位AI博士对人工智能学习的建议

综合实战,对未来进行规划和终身学习

欢迎留言评论交流

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多