自动驾驶的核心内涵包括定位、感知、决策、执行四个部分,其中定位是决策和执行的前提。定位系统主要作用是确定车辆所处的绝对位置;感知层的主要作用是收集和解析出周围环境的信息;决策层基于对当前位置和周围环境的理解,做出实时的安全有效的执行计划;执行层则是按照决策层的计划进行。 定位系统主要是以高精地图为依托,通过惯性传感器(IMU)和全球定位系统(GNSS),来精确定位车辆所处绝对位置。其中,高精地图可以为车辆环境感知提供辅助,提供超视距路况信息,并帮助车辆进行规划决策。惯导系统是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统;而全球定位系统是通过卫星定位,在地球表面或近地空间的任何地点,提供三维坐标和速度的定位系统。二者的结合就可以取长补短,共同构成自动驾驶定位导航系统。 感知层主要功能是对环境信息和车内信息进行采集与处理,例如车辆的速度,方向,运动姿态和交通状况等,并向决策层输出信息。这一环节涉及到道路边界检测、车辆检测、行人检测等多种技术,所用到的传感器一般有激光雷达、摄像头、毫米波雷达、超声波雷达等。由于各个传感器在设计的时候有各自的局限性,单个传感器满足不了各种工况下的精确感知,想要车辆在各种环境下平稳运行,就需要运用到多传感器融合技术,该技术也是环境感知这一大类技术的关键所在。 决策层的作用在于接收来自车体自身感知器件以及来自车联网的网络虚拟空间信号,通过整合车载或云端处理结果,替代人类进行决策判断,输出车辆控制信号。例如在车道保持、车道偏离预警、车距保持,障碍物警告中,需要预测本车与其他车辆、车道、行人等在未来一段时间内的状态,并做出下一步动作决策。这项技术相当于自动汽车的“驾驶脑”,以算法为核心,并通过半导体等硬件技术对高速运算提供支持。 执行层主要是在系统做出决策后,替代人类对车辆进行控制,反馈到底层模块执行任务。车辆的各个操控系统都需要能够通过总线与决策系统相链接,并能够按照决策系统发出的总线指令精确地控制加速程度,制动程度以及转向幅度等驾驶动作。 前面已经对自动驾驶的环境感知,实时定位有过介绍,同时也介绍了SLAM定位和用GPS RTK定位。‘RTK+高性能惯性导航+里程计’将会组成一套较为完备的高精度定位系统,当然如果高精度地图能提供地图反馈的功能,甚至基于高精度地图可以判断楼宇桥梁位置,并对卫星信号的遮挡及多路径效应做出提前预判,就能够大幅提高RTK定位精度。 高精地图包含有大量自动驾驶所必须具备的信息。高精地图除了静态的地图信息外,还有大量普通导航地图所不具备的动态高精地图信息,比如道路拥堵情况、施工情况、是否有交通事故、交通管制情况、天气情况等动态交通信息。 高精度地图包括大量的驾驶辅助信息,最重要的信息是道路网的精确三维表征。 高精度地图还包括许多语义信息,地图可能会报告交通灯上不同颜色的含义,也可能指示道路的速度限速,以及左转车道的位置,例如交叉路口布局和路标位置。另外高精度地图做重要的特征之一是精度,手机上的导航只能达到“米”级精度,高精度地图可以达到厘米级精度,这对无人驾驶车至关重要。 高精地图一般具有以下四个特点。 它提供了先验的知识,它的感知范围比现有的传感器感知范围要远很多。视觉和激光最多能达200米,但更远的地方以及视距范围外的情况,传感器是无法获得的,而地图具有无限远的数据感知。 地图可消除传感器的一些误差。有些传感器会判断错,虽然现在这种情况越来越少了,但还存在。当传感器无法识别像金属这些状况时,通过地图可以解决,同时地图可以告知该地区误差范围可能是多大,通过一系列AI算法,可消除传感器的一些误差。 地图不受恶劣天气的影响,在雨雪天气的情况下,几乎任何传感器都失效。但只要有位置信息和地图,完全不可视的环境中,也能完成一些自动驾驶功能。 地图能够表达传感器无法获得的部分知识,通过数据积累、挖掘获得部分驾驶经验的载体,可集成在地图中作为一种相应的知识传达给每一个自动驾驶终端,补充其他传感器的一些功能。 定位,感知软件及规划都依赖高精度地图,高精度地图可以帮助车辆找到合适的行车空间,帮助规划器确定不同的路线选择,并帮助预测软件预测道路上其他车辆在将来的位置,在有限速或障碍物的路段,高精度地图可以使车辆提前查看,提前加速或者变道。 关于自动驾驶的技术文章,可以参考前文,下面是链接: |
|