本节内容
- 路由系统
- models模型
- admin
- views视图
- template模板
引子
讲django的models之前, 先来想一想, 让你通过django操作数据库,你怎么做? 做苦思冥想,可能会这样写。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import pymysql
def index(request):
conn = pymysql.connect(host = '127.0.0.1' , port = 3306 , user = 'root' , passwd = 'alex123' , db = 'luffy_dev' )
cursor = conn.cursor()
cursor.execute( "select username,email,mobile from web_account" )
data_set = cursor.fetchall()
cursor.close()
conn.close()
return HttpResponse(data_set)
|
很方便就实现了从数据库里取数据,事实上,很多人确实就是这么做的。但这样做会带来2个问题
- SQL注入危险,因为有的时候你操作数据库的语句不是写死在代码里的,而是通过前端传参数拼接的,这就给黑客有了可趁之机,通过拼接参数实现sql注入。
- 语句跟代码揉在一起了,增加后续维护成本
那怎么办呢?ORM提供了新思路。
什么是ORM呢?
对象关系映射(Object Relational Mapping),它的实质就是将关系数据(库)中的业务数据用对象的形式表示出来,并通过面向对象(Object-Oriented)的方式将这些对象组织起来,实现系统业务逻辑的过程。
在ORM过程中最重要的概念是映射(Mapping),通过这种映射可以使业务对象与数据库分离。从面向对象来说,数据库不应该和业务逻辑绑定到一起,ORM则起到这样的分离作用,使数据库层透明,开发人员真正的面向对象。
上面的解释有点蒙蔽对不?其实你只需要抓住2个关键词, “映射” 和 “对象”,就能知道orm是什么干什么的了。
- 映射(Mapping) —— 把表结构映射成类
- 对象 —— 像操作类对象一样,操作数据库里的数据
映射
看下面的图,就是直观的例子,把右边的表结构映射成了左边的类

Sql语句到对象
ORM可以使你不用再写原生SQL, 而是像操作对象一样就可以实现对表里数据的增删改查

好棒棒,妈妈再也不用逼你写原生sql啦!
但是不要开心太早,ORM确实提高了开发效率,并且降低了数据操作与代码之间的耦合,不过有利就有弊,我们总结一下orm的优缺点。
优点:
- 实现了代码与数据操作的解耦合
- 不需自己写原生sql, 提高开发效率
- 防止SQL注入, 通过对象操作的方式,默认就是防止sql注入的。
缺点:
- 牺牲性能, 对象到原生SQL势必会有转换消耗,对性能有一定的影响
- 复杂语句力不从心, 一些复杂的sql语句,用orm对象操作的方式很难实现,就还得用原生sql
讲Django为什么说ORM? 哈, 好啦,是时候该引出主角啦,因为Django的models基于架构ORM实现的。
Models模型
Django 的models把数据库表结构映射成了一个个的类, 表里的每个字段就是类的属性。我们都知道数据库有很多字段类型,int,float,char等, Django的models类针对不同的字段也设置了不同的类属性。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
AutoField
BigAutoField
BigIntegerField
BinaryField
BooleanField
CharField
DateField
DateTimeField
DecimalField
DurationField
EmailField
FileField
FloatField
ImageField
IntegerField
GenericIPAddressField
NullBooleanField
PositiveIntegerField
PositiveSmallIntegerField
SlugField
SmallIntegerField
TextField
TimeField
URLField
UUIDField
|
除了普通的表字段,针对外键也有映射
1
2
3
4
|
ForeignKey
ManyToManyField
OneToOneField
|
好啦,接下来就用django的orm来设计一个博客表。
需求
- 每个用户有自己的账户信息
- 用户可以发文章
- 文章可以打多个标签
根据需求,我们设计3张表

注意Article表和Tag表是属于多对多关系,什么是多对多?即一个文章有多个标签,一个标签又可以属于多个文章。
比如上图的Article表中id为3的文章 ,它的标签是4,26, 即投资、大文娱、社交, 你看“投资”这个标签同时还属于文章2。 这就是多对多关系 , 即many to many .
那这种多对多的关系如何在表中存储呢?难道真的像上图中一样,在Article表中加个tags字段,关联Tag表里的多条数据,通过逗号区分?
这倒确实是个解决办法。但是也有问题,一个字段里存多条纪录的id,就没办法做查询优化了。比如不能做索引等。
所以若想实现多对多关系的高效存储 查询优化,可以在Article and Tag表之间再搞出一张表。

这样是不是就实现了多对多关联?
yes, 没错, django也是这么做的, django 有个专门的字段,叫ManyToManyField, 就是用来实现多对多关联的,它会自动生成一个如上图一样的第3张表来存储多对多关系。
正式的表结构
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
from django.db import models
class Account(models.Model):
username = models.CharField(max_length = 64 ,unique = True )
email = models.EmailField()
password = models.CharField(max_length = 128 )
register_date = models.DateTimeField( "注册日期" ,auto_now_add = True )
signature = models.CharField(verbose_name = "签名" ,max_length = 128 ,blank = True ,null = True )
class Article(models.Model):
title = models.CharField(max_length = 255 ,unique = True )
content = models.TextField( "文章内容" )
account = models.ForeignKey( "Account" ,verbose_name = "作者" ,on_delete = models.CASCADE)
tags = models.ManyToManyField( "Tag" ,blank = True )
pub_date = models.DateTimeField()
read_count = models.IntegerField(default = 0 )
class Tag(models.Model):
name = models.CharField(max_length = 64 ,unique = True )
date = models.DateTimeField(auto_now_add = True )
|
我们发现,每个字段其实都是一个独立的对象,一张表其实是很多类的组合。
上面好多字段里还跟了些参数,我们来看以下常用的:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
null
blank
db_column
db_index
default
editable
help_text
primary_key
unique
unique_for_date
unique_for_month
unique_for_year
verbose_name
|
还有几个特殊的字段属性需要单独介绍下
choices
An iterable (e.g., a list or tuple) consisting itself of iterables of exactly two items (e.g. [(A, B), (A, B) ...]) to use as choices for this field.
The first element in each tuple is the actual value to be set on the model, and the second element is the human-readable name.
1
2
3
4
5
6
7
8
9
10
11
12
|
class Student(models.Model):
YEAR_IN_SCHOOL_CHOICES = (
( 'FR' , 'Freshman' ),
( 'SO' , 'Sophomore' ),
( 'JR' , 'Junior' ),
( 'SR' , 'Senior' ),
)
year_in_school = models.CharField(
max_length = 2 ,
choices = YEAR_IN_SCHOOL_CHOICES,
default = FRESHMAN,
)
|
ForeignKey.on_delete
当一条记录关联的外键纪录被删除时,django 也会根据外键关联限制的配置来决定如何处理当前这条纪录。举例,如果你有个可以为null的外键关联,并且你想在本纪录关联的数据被删除时,把当前纪录的关联字段设为null,那就配置如下
1
2
3
4
5
6
|
user = models.ForeignKey(
User,
on_delete = models.SET_NULL,
blank = True ,
null = True ,
)
|
这个on_delete就是决定在关联对象被删除时,如何处理当前纪录的,常用的参数如下:
- CASCADE——Cascade deletes. Django emulates the behavior of the SQL constraint ON DELETE CASCADE and also deletes the object containing the ForeignKey.
- PROTECT——Prevent deletion of the referenced object by raising ProtectedError, a subclass of django.db.IntegrityError.
- SET_NULL——Set the ForeignKey null; this is only possible if null is True.
- SET_DEFAULT——Set the ForeignKey to its default value; a default for the ForeignKey must be set.
配置Django数据库连接信息
Django支持多种数据库,Sqlite、Mysql、Oracle、PostgreSQL,默认的是小型文件数据库Sqlite
1
2
3
4
5
6
|
DATABASES = {
'default' : {
'ENGINE' : 'django.db.backends.sqlite3' ,
'NAME' : os.path.join(BASE_DIR, 'db.sqlite3' ),
}
}
|
咱们是干大事的人,怎么也得用个Mysql呀, 改成mysql 也so easy.
1
2
3
4
5
6
7
8
9
10
|
DATABASES = {
'default' : {
'ENGINE' : 'django.db.backends.mysql' ,
'NAME' : 'my_db' ,
'USER' : 'mydatabaseuser' ,
'PASSWORD' : 'mypassword' ,
'HOST' : '127.0.0.1' ,
'PORT' : '3306' ,
}
}
|
不过注意,python3 连接mysql的得使用pymysql,MysqlDB模块300年没更新了,但django默认调用的还是MySQLdb, so pymysql有个功能可以让django以为是用了MySQLdb. 即在项目目录下的__init__.py中加上句代码就好
1
2
3
|
import pymysql
pymysql.install_as_MySQLdb()
|
不加的话,一会连接数据时会报错噢 。
同步数据库
你在ORM定义的表结构如何同步到真实的数据库里呢? 只需2条命令。但django只能帮你自动创建表,数据库本身还是得你自己来。
1
|
create database my_db charset utf8;
|
好了,可以同步了,说好只需2步。
1. 生成同步文件, django自带一个专门的工具叫migrations, 负责把你的orm表转成实际的表结构,它不旦可以帮自动创建表,对表结构的修改,比如增删改字段、改字段属性等也都能自动同步。只需通过下面神奇的命令。
1
|
python manage.py makemigrations
|
不出意外的话,会显示类似以下信息
1
2
3
4
5
6
7
|
$ python manage.py makemigrations
Migrations for 'app01' :
app01 /migrations/0001_initial .py
- Create model Account
- Create model Article
- Create model Tag
- Add field tags to article
|
此时你会发现,你的app下的migrations目录里多了一个0001_initial.py的文件 ,这个文件就是因为你这条命令而创建的,migrations工具就会根据这个文件来创建数据库里的表。
2. 同步到数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
$ python manage.py migrate
Operations to perform:
Apply all migrations: admin, app01, auth, contenttypes, sessions
Running migrations:
Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry_remove_auto_add... OK
Applying app01.0001_initial... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... OK
Applying auth.0009_alter_user_last_name_max_length... OK
Applying sessions.0001_initial... OK
(venv_django2) Alexs-MacBook-Pro:mysite alex$
|
此时登录你的数据库,会发现创建了好多张表
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
mysql> show tables;
----------------------------
| Tables_in_luffy_dev2 |
----------------------------
| app01_account |
| app01_article |
| app01_article_tags |
| app01_tag |
| auth_group |
| auth_group_permissions |
| auth_permission |
| auth_user |
| auth_user_groups |
| auth_user_user_permissions |
| django_admin_log |
| django_content_type |
| django_migrations |
| django_session |
----------------------------
14 rows in set (0.00 sec)
|
好啦,表结构也有了,我们可以往里面插数据啦。
之前说好的是可以不用SQL语句的,一点不骗你。
用orm对表数据进行增删改查
先进入已经连接好数据库的django python环境
1
2
3
4
5
6
7
|
(venv_django2) Alexs-MacBook-Pro:mysite alex$ python manage.py shell
Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help" , "copyright" , "credits" or "license" for more information.
(InteractiveConsole)
>>>
>>> from app01 import models
|
创建
创建数据简单的令人发指

查

filter 支持很多的过滤条件,我们来看下:
contains
包含,相当于sql的like条件
1
|
Entry.objects.get(headline__contains= 'Lennon' )
|
SQL equivalent:
1
|
SELECT ... WHERE headline LIKE '%Lennon%' ;
|
Note this will match the headline 'Lennon honored today' but not 'lennon honored today'.
icontains 大小写不敏感
in
In a given iterable; often a list, tuple, or queryset.
1
|
Entry.objects. filter (id__in = [ 1 , 3 , 4 ])
|
SQL equivalent:
1
|
SELECT ... WHERE id IN (1, 3, 4);
|
You can also use a queryset to dynamically evaluate the list of values instead of providing a list of literal values:
1
2
|
inner_qs = Blog.objects. filter (name__contains = 'Cheddar' )
entries = Entry.objects. filter (blog__in = inner_qs)
|
This queryset will be evaluated as subselect statement:
1
|
SELECT ... WHERE blog.id IN ( SELECT id FROM ... WHERE NAME LIKE '%Cheddar%' )
|
gt
1
|
Entry.objects. filter (id__gt = 4 )
|
SQL equivalent:
1
|
SELECT ... WHERE id > 4;
|
gte Greater than or equal to.
lt Less than.
lte Less than or equal to.
startswith Case-sensitive starts-with.
1
|
Entry.objects. filter (headline__startswith = 'Lennon' )
|
SQL equivalent:
1
|
SELECT ... WHERE headline LIKE 'Lennon%' ;
|
SQLite doesn’t support case-sensitive LIKE statements; startswith acts like istartswith for SQLite
istartswith Case-insensitive starts-with.
endswith Case-sensitive ends-with.
iendswith Case-insensitive ends-with
range 区间过渡,可对数字、日期进行过滤
1
2
3
4
|
import datetime
start_date = datetime.date( 2005 , 1 , 1 )
end_date = datetime.date( 2005 , 3 , 31 )
Entry.objects. filter (pub_date__range = (start_date, end_date))
|
SQL equivalent:
1
|
SELECT ... WHERE pub_date BETWEEN '2005-01-01' and '2005-03-31' ;
|
Warning!
Filtering a DateTimeField with dates won’t include items on the last day, because the bounds are interpreted as “0am on the given date”. If pub_date was a DateTimeField, the above expression would be turned into this SQL:
SELECT ... WHERE pub_date BETWEEN '2005-01-01 00:00:00' and '2005-03-31 00:00:00'; Generally speaking, you can’t mix dates and datetimes.
date
For datetime fields, casts the value as date. Allows chaining additional field lookups. Takes a date value.
1
2
|
Entry.objects. filter (pub_date__date = datetime.date( 2005 , 1 , 1 ))
Entry.objects. filter (pub_date__date__gt = datetime.date( 2005 , 1 , 1 ))
|
year For date and datetime fields, an exact year match. Allows chaining additional field lookups. Takes an integer year.
1
2
|
Entry.objects. filter (pub_date__year = 2005 )
Entry.objects. filter (pub_date__year__gte = 2005 )
|
SQL equivalent:
1
2
|
SELECT ... WHERE pub_date BETWEEN '2005-01-01' AND '2005-12-31' ;
SELECT ... WHERE pub_date >= '2005-01-01' ;
|
When USE_TZ is True, datetime fields are converted to the current time zone before filtering. 简单解决办法是把USE_TZ=False
month For date and datetime fields, an exact month match. Allows chaining additional field lookups. Takes an integer 1 (January) through 12 (December).
1
2
|
Entry.objects. filter (pub_date__month = 12 )
Entry.objects. filter (pub_date__month__gte = 6 )
|
When USE_TZ is True , datetime fields are converted to the current time zone before filtering. This requires time zone definitions in the database.
SQL equivalent:
1
2
|
SELECT ... WHERE EXTRACT( 'month' FROM pub_date) = '12' ;
SELECT ... WHERE EXTRACT( 'month' FROM pub_date) >= '6' ;
|
day For date and datetime fields, an exact day match. Allows chaining additional field lookups. Takes an integer day.
1
2
|
Entry.objects.filter(pub_date__day=3)
Entry.objects.filter(pub_date__day__gte=3)
|
SQL equivalent:
1
2
|
SELECT ... WHERE EXTRACT( 'day' FROM pub_date) = '3' ;
SELECT ... WHERE EXTRACT( 'day' FROM pub_date) >= '3' ;
|
week
New in Django 1.11.
For date and datetime fields, return the week number (1-52 or 53) according to ISO-8601, i.e., weeks start on a Monday and the first week contains the year’s first Thursday.
Example:
1
2
|
Entry.objects. filter (pub_date__week = 52 )
Entry.objects. filter (pub_date__week__gte = 32 , pub_date__week__lte = 38 )
|
week_day
For date and datetime fields, a ‘day of the week’ match. Allows chaining additional field lookups.
Takes an integer value representing the day of week from 1 (Sunday) to 7 (Saturday).
Example:
1
2
|
Entry.objects.filter(pub_date__week_day=2)
Entry.objects.filter(pub_date__week_day__gte=2)
|
hour
For datetime and time fields, an exact hour match. Allows chaining additional field lookups. Takes an integer between 0 and 23.
Example:
1
2
3
|
Event.objects. filter (timestamp__hour = 23 )
Event.objects. filter (time__hour = 5 )
Event.objects. filter (timestamp__hour__gte = 12 )
|
SQL equivalent:
1
2
3
|
SELECT ... WHERE EXTRACT( 'hour' FROM timestamp ) = '23' ;
SELECT ... WHERE EXTRACT( 'hour' FROM time ) = '5' ;
SELECT ... WHERE EXTRACT( 'hour' FROM timestamp ) >= '12' ;同
|
同时,还支持mintue,second
1
2
3
4
|
Event.objects.filter(time__minute=46)
Event.objects.filter(timestamp__second=31)
|
isnull
Takes either True or False , which correspond to SQL queries of IS NULL and IS NOT NULL , respectively.
Example:
1
|
Entry.objects. filter (pub_date__isnull = True )
|
SQL equivalent:
1
|
SELECT ... WHERE pub_date IS NULL ;
|
regex
Case-sensitive regular expression match.
Example:
1
|
Entry.objects.get(title__regex = r '^(An?|The) ' )
|
SQL equivalents:
1
2
3
4
5
6
7
|
SELECT ... WHERE title REGEXP BINARY '^(An?|The) ' ;
SELECT ... WHERE REGEXP_LIKE(title, '^(An?|The) ' , 'c' );
SELECT ... WHERE title ~ '^(An?|The) ' ;
SELECT ... WHERE title REGEXP '^(An?|The) ' ;
|
iregex 大小写不敏感
改删
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
models.Account.objects. filter (username = 'elina' ).update(password = "Luffy#21" )
obj = models.Account.objects.get(username = 'linux' )
obj.username = 'python'
obj.save()
models.User.objects.get(password = 'oldboy' ).delete()
obj = models.User.objects.get( id = 3 )
obj.delete()
|
数据返回后的展示
values()
values (*fields, **expressions)
Returns a QuerySet that returns dictionaries, rather than model instances, when used as an iterable.
1
2
3
4
|
>>> Blog.objects.values()
<QuerySet [{ 'id' : 1 , 'name' : 'Beatles Blog' , 'tagline' : 'All the latest Beatles news.' }]>
>>> Blog.objects.values( 'id' , 'name' )
<QuerySet [{ 'id' : 1 , 'name' : 'Beatles Blog' }]>
|
order_by()
order_by (*fields)
By default, results returned by a QuerySet are ordered by the ordering tuple given by the ordering option in the model’s Meta . You can override this on a per-QuerySet basis by using the order_by method.
1
|
Entry.objects. filter (pub_date__year = 2005 ).order_by( '-pub_date' , 'headline' )
|
The result above will be ordered by pub_date descending, then by headline ascending. The negative sign in front of "-pub_date" indicates descending order. Ascending order is implied.
reverse()
Use the reverse() method to reverse the order in which a queryset’s elements are returned. Calling reverse() a second time restores the ordering back to the normal direction.
To retrieve the “last” five items in a queryset, you could do this:
1
|
my_queryset.reverse()[: 5 ]
|
ORM对象操作
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
单表对象操作
o = models.Article.objects. all ()[ 0 ]
o.tilte
外键关联
>>> o.account.username
'jack'
>>> o.account.username = rain
外键反向关联操作
>>> a = models.Account.objects.get(username = 'alex' )
>>> a.article_set. all ()
<QuerySet [<Article: 你好, 2018 >]>
>>> a.article_set.select_related()
<QuerySet [<Article: 你好, 2018 >]>
多对多操作
>>> o = models.Article.objects. all ()[ 1 ]
>>> o.tags. all ()
<QuerySet [<Tag: 投资>, <Tag: 科技>]>
多对多反向操作
>>> t = models.Tag.objects.get(name = "投资" )
>>> t.article_set. all ()
<QuerySet [<Article: 你好, 2018 >, <Article: 粉丝超过 10 万后,我经历了抖音盗号风波>]>
|
好啦,orm的操作先点到为止,后面学项目时再带你搞复杂的。
练习题
- 基于前面课程设计的表结构,完成以下练习:
- 创建5条account和5条新tag纪录
- 创建5条article信息,关联上面的不同的用户和tag
- 在account表里找到用户名包含al的纪录,然后把密码改掉
- 在article表找到文章内容包含“电影”2个字的,把这些文章加上”大文娱”tag
- 把用户elina发表的文章找出来,并且把作者都改成alex
- 找到用户表里注册日期在2018-04月,并且signature为空的纪录
- 打到文章中标签为“投资”的所有文章
- 找到每个月8号注册的用户
- 找到每年5月发表的文章
- 找到2015-2017年5月发表的文章
- 找到文章作者以’a’或’k’开头的文章
来源:https://www./content-4-328551.html
|