当以读书通世事 / 41-数学(大中... / 等腰直角三角形系列问题【1】

0 0

   

等腰直角三角形系列问题【1】

2019-08-25  当以读书...

等腰三角形,是八年级上的一个重要内容,也对八年级下的菱形,起到非常好的影响。直角三角形,八年级下的勾股定理主要图形,也是矩形的组成部分,同时也是九年级相似问题的核心之一。等腰直角三角形,秉承了这么多高贵出身,当然的是研究几何题的出发之地。

据我所知,大连中考数学几何压轴题,就有不下三次的直接挪用等腰直角三角形的典型问题,包括其解题方法。

当然了,要说清楚等腰直角三角形问题,就不能被上面提到的利用等腰直角三角形出的中考压轴题影响,而要按其本身的节奏走,这样才能将其把握全面,在未来的中考考试里,从容自如的解决问题。

典型问题1

等腰直角三角形系列问题【1】

如图,在△ABC中,CA=CB,∠ACB=90°(这些是等腰直角三角形用数学符号的特标准写法),点E、F在AB上,满足∠ECF=45°.求证:EF²=AE²+BF².

分析1

看结论的思考(也适合分析2,也是分析2的引子):EF²=AE²+BF²,显然就是勾股定理结论的样子,不用太多顾虑,我们就应该想到将三条线段EF、AE、BF拼装在一个直角三角形,且其中AE、BF为两条直角边,EF就是当然的斜边。还能不是吗?

等腰直角三角形系列问题【1】

方法一(见下图,也是作直角三角形的常见套路):过一个确定是直角边的线段(AE)端点(A),作这条线段(AE)的垂线段(AG),使垂线段等于另一个确定了直角边(BF),然后,通过推导说明这个直角三角形的斜边(EG)等于结论中的第三条线段(EF)。

从结论需要出发这样的思考,与从已知条件转化的思考,是吻合的。

从已知条件的思考:说白了,就是一系列的转化,从已知条件出发,展开想象力,去到能去的地方。

方法二(见下图):比如已知:CA=CB,那就是转化为:以C为旋转中心。再加∠ACB=90°,旋转角为90°而已(过点C作的垂线段,使得CG=CF)。

方法三(见下图):比如已知:∠ECF=45°.转化为∠ECF=∠ACE+∠BCF,这个也可以最后转化为两个角相等(只要把后两个角拼在一起,即作∠ACG=∠BCF).

所有这样的从已知条件的转化思考,与上面从结论需要的思考,是完全合拍对茬的。

等腰直角三角形系列问题【1】

具体如上三种方法的写法,请大家自行完成吧!一定要珍惜这样的练习,这对你理解我上面的分析,是非常有意义的巩固。

分析2

拼装一个直角三角形的第二种方式是:

以已经确定是斜边的线段(EF)为一边,构造一个三角形(△EFG),使得(这是要通过作一个全等再说明另一个全等才能的。如果只是一条线段等,还可以直接指定,两个线段一起等,还是有一番周折要走的)另外两条边(EG和FG),分别等于已经确定的两个直角边(AE和CF),再说明这个三角形是直角三角形(∠EGF=90°)。

等腰直角三角形系列问题【1】

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。如发现有害或侵权内容,请点击这里 或 拨打24小时举报电话:4000070609 与我们联系。

    猜你喜欢

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多