kanglanlan / 数学 / 「学霸系列」初中数学几何辅助线添加截长...

分享

   

「学霸系列」初中数学几何辅助线添加截长补短模型6-10题建议收藏

2019-08-30  kanglanlan

第6题

(2018春·顺义区期末)在正方形ABCD的内侧作直线BM,点C关于BM的对称点为E,直线BMEA的延长线交于点F,连接BECECF

(1)依题意补全图形;

(2)求证:CFEF

(3)直接写出线段ABEFAF之间的数量关系.

「学霸系列」初中数学几何辅助线添加截长补短模型6-10题建议收藏

【热门考点】全等三角形的判定与性质;LE:正方形的性质;作图﹣轴对称变换.

【解题思路】(1)根据题意画出图形即可;

(2)利用辅助圆,证明∠FEC

ABC=45°即可解决问题;

(3)结论:EF2+AF2=2AB2.利用勾股定理即可解决问题;

【解答】解:(1)图形如图1中所示:

「学霸系列」初中数学几何辅助线添加截长补短模型6-10题建议收藏

【解题技巧】本题考查了作图﹣轴对称变换、正方形的性质、圆周角定理、勾股定理、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.

第7题

(2016秋·自贡期末)在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C是∠MON的平分线OP上一点,点AOM上,此时,在ON上截取OBOA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,参考上面的方法,解答下列问题:

「学霸系列」初中数学几何辅助线添加截长补短模型6-10题建议收藏

如图2,在非等边△ABC中,∠B=60°,ADCE分别是∠BAC,∠BCA的平分线,且ADCE交于点F,求证:ACAE+CD

【热门考点】全等三角形的判定与性质.

【解题思路】在AC上截取AGAE,连接FG,根据“边角边”证明△AEF和△AGF全等,根据全等三角形对应角相等可得∠AFE=∠AFG,全等三角形对应边相等可得FEFG,再根据角平分线的定义以及三角形的内角和定理推出∠2+∠3=60°,从而得到∠AFE=∠CFD=∠AFG=60°,然后根据平角等于180°推出∠CFG=60°,然后利用“角边角”证明△CFG和△CFD全等,根据全等三角形对应边相等可得FGFD,从而得证.

【解答】证明:如图,在AC上截取AGAE,连接FG

AD是∠BAC的平分线,CE是∠BCA的平分线,

∴∠1=∠2,3=∠4

在△AEF和△AGF中,∴△AEF≌△AGFSAS),

∴∠AFE=∠AFG

∵∠B=60°

∴∠BAC+∠ACB=120°,

∴∠2+∠3

(∠BAC+∠ACB)=60°,

∵∠AFE=∠2+∠3,

∴∠AFE=∠CFD=∠AFG=60,

∴∠CFG=180°﹣∠CFD﹣∠AFG=60°,

∴∠CFD=∠CFG

【解题技巧】本题考查了全等三角形的判定与性质,角平分线的定义,三角形的内角和定理,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,根据所求角度正好等于60°得到角相等是解题的关键.

第8题

(2019·福州模拟)(1)已知,如图①,在△ABC中,∠BAC=90°,ABAC,直线m经过点ABD⊥直线mCE⊥直线m,垂足分别为点DE,求证:DEBD+CE

(2)如图②,将(1)中的条件改为:在△ABC中,ABACDAE三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DEBD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.

「学霸系列」初中数学几何辅助线添加截长补短模型6-10题建议收藏

【热门考点】全等三角形的判定与性质.

【解题思路】(1)根据BD⊥直线mCE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA

AEBDADCE,于是DEAE+ADBD+CE

(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.

【解答】证明:(1)∵BD⊥直线mCE⊥直线m

∴∠BDA=∠CEA=90°,

∵∠BAC=90°,

∴∠BAD+∠CAE=90°,

∵∠BAD+∠ABD=90°,

∴∠CAE=∠ABD

【解题技巧】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.

第9题

(2018秋·临洮县期末)如图:在△ABC中,∠ACB=90°,ACBC,过点C在△ABC外作直线MNAMMNMBNMNN

(1)求证:MNAM+BN

(2)若过点C在△ABC内作直线MNAMMNMBNMNN,则AMBNMN之间有什么关系?请说明理由.

「学霸系列」初中数学几何辅助线添加截长补短模型6-10题建议收藏

【热门考点】全等三角形的判定与性质.

【解题思路】(1)利用互余关系证明∠MAC=∠NCB,又∠AMC=∠CNB=90°,ACBC,故可证△AMC≌△CNB,从而有AMCNMCBN,利用线段的和差关系证明结论;

(2)类似于(1)的方法,证明△AMC≌△CNB,从而有AMCNMCBN,可推出AMBNMN之间的数量关系.

【解答】证明:(1)∵AMMNBNMN

∴∠AMC=∠CNB=90°,

∵∠ACB=90°,

∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,

∴∠MAC=∠NCB

在△AMC和△CNB中,

AMC=∠CNB

MAC=∠NCB

ACCB

AMC≌△CNBAAS),

AMCNMCNB

MNNC+CM

MNAM+BN

(2)结论:MNBNAM

AMMNBNMN

∴∠AMC=∠CNB=90°,

∵∠ACB=90°,

∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,

∴∠MAC=∠NCB

在△AMC和△CNB中,

AMC=∠CNB

MAC=∠NCB

ACCB

AMC≌△CNBAAS),

AMCNMCNB

MNCMCN

MNBNAM

【解题技巧】本题考查了全等三角形的判定与性质.关键是利用互余关系推出对应角相等,证明三角形全等.

第10题

(2019春·崂山区期末)如图,在Rt△ABC中,∠ABC=90°点DBC的延长线上,且BDAB.过点BBEAC,与BD的垂线DE交于点E

(1)求证:△ABC≌△BDE

(2)请找出线段ABDECD之间的数量关系,并说明理由.

「学霸系列」初中数学几何辅助线添加截长补短模型6-10题建议收藏

【热门考点】全等三角形的判定与性质.

【解题思路】(1)利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可;

(2)根据全等三角形的性质即可得到结论.

【解答】(1)证明:∵BEAC

∴∠A+∠ABE=90°,

∵∠ABC=90°,

∴∠DBE+∠ABE=90°,

∴∠A=∠DBE

【解题技巧】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.

课程体系

「学霸系列」初中数学几何辅助线添加截长补短模型6-10题建议收藏

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多

    ×
    ×

    ¥.00

    微信或支付宝扫码支付:

    开通即同意《个图VIP服务协议》

    全部>>